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Резюме 

Цель исследования. Традиционные методы, основанные на визуальном наблюдении и ручном подсчете, не 
только обладают очевидными ограничениями с точки зрения затрат времени и людских ресурсов, но и дают 
недостаточно точные результаты из-за субъективного человеческого фактора в процессе работы. Эти 
погрешности, даже незначительные, могут привести к ошибочным управленческим решениям, что негативно 
сказывается на эффективности производства в аквакультуре.  
Методы. С целью устранения указанных недостатков в данной статье представлено автоматизированное 
решение, использующее нейронную модель YOLOv9t для задачи обнаружения и подсчета рыбы на изображениях, 
выполненных под водой. Благодаря оптимизированной архитектуре нейронной модели YOLOv9t, включающей 
всего 2 млн параметров, продемонстрированы высокие результаты определения рыб на изображениях из 
набора данных DeepFish: Точность - 0.928, Полнота - 0.91, mAP50 - 0.961 и mAP50-95 - 0.584. Метод Non-
Maximum Suppression использован для устранения дублирующихся случаев обнаружения рыб на одной области, 
а применение алгоритма DeepSORT позволило непрерывно отслеживать каждую особь на последователь-
ности кадров в видеозаписи с помощью уникальных идентификаторов.  
Результаты исследования подтвердили, что нейронная модель YOLOv9t пригодна для создания автомати-
зированных систем видеоаналитики в рыбоводстве для мониторинга за поведением рыб и управления актива-
ционными устройствами. Это позволяет перевести ключевые процессы контроля на полностью автоматизи-
рованную основу, оптимизируя использование ресурсов. Предложенная архитектура обеспечила высокую 
точность и надежность в различных условиях среды - от прозрачной до мутной воды, открывая перспективы 
для применения на производстве в реальных условиях эксплуатации.  
Заключение. Такая стабильность работы делает систему готовой для внедрения в промышленных 
масштабах с целью повышения эффективности управления хозяйством. 
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Abstract 

Purpose of research. Traditional methods based on visual observation and manual counting not only have obvious 
limitations in terms of time and human resource costs but also yield insufficiently accurate results due to the subjec-
tive human factor involved in the process. These inaccuracies, even minor ones, can lead to erroneous management 
decisions, which negatively impact production efficiency in aquaculture.  
Methods. To eliminate these shortcomings, this paper presents an automated solution that utilizes the YOLOv9t neu-
ral network model for the task of detecting and counting fish in underwater images. Thanks to the optimized architec-
ture of the YOLOv9t neural model, which contains only 2 million parameters, it demonstrated high performance in 
identifying fish in images from the DeepFish dataset, with the following evaluation metrics: Precision - 0.928, Recall - 
0.91, mAP50 - 0.961, and mAP50-95 - 0.584. The Non-Maximum Suppression method was used to eliminate dupli-
cate detections of fish in the same area, while the application of the DeepSORT algorithm enabled the continuous 
tracking of each individual across video frame sequences by assigning unique identifiers.  
Results. The research results confirmed that the YOLOv9t neural model is suitable for creating automated video ana-
lytics systems in aquaculture for monitoring fish behavior and managing activation devices. This enables the transi-
tion of key control processes to a fully automated basis, thereby optimizing resource utilization. The proposed archi-
tecture provided high accuracy and reliability across various environmental conditions-from clear to murky water-
opening prospects for application in real-world production environments.  
Conclusion. This operational stability makes the system ready for industrial-scale implementation with the aim of 
enhancing farm management efficiency. 
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*** 

Введение 

Одной из самых серьезных проблем, 
с которыми сталкиваются владельцы 
рыбных хозяйств, является точное оп-
ределение плотности рыбы, отслежива-
ние уровня потерь и прогнозирование 

объема вылова. Традиционные методы, 
такие как ручной подсчет, не только 
требуют значительных затрат времени и 
рабочей силы, но и подвержены боль-
шим погрешностям, вызывают стресс у 
рыб [1], а главное – приводят к неточ-
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ным управленческим решениям в во-
просах кормления, профилактики забо-
леваний и планирования сбора урожая. 

Прогресс в области робототехники 
[2-3], Интернета вещей (IoT) [4], искус-
ственного интеллекта (AI) [5-7], и осо-
бенно компьютерного зрения [8-10], от-
крывает новую эпоху индустривальной 
аквакультуры [11-12]. В этом контексте 
глубокие нейронные сети позволяют 
реализовать автоматический, непрерыв-
ный и высокоточный мониторинг пове-
дения рыб и отдельных особей. Среди 
них особенно выделяется семейство 
нейронных моделей YOLO (You Only 
Look Once) – архитектура для обнаруже-
ния объектов в реальном времени, отли-
чающаяся высокой скоростью и точно-
стью [13]. Способность модели обраба-
тывать видеопотоки, поступающие на-
прямую с камер, установленных в ры-
боводных садках, с целью распознава-
ния и подсчета каждой особи в реаль-
ном времени делает модель YOLO иде-
альным решением, способным револю-
ционизировать процесс управления рыб-
ными фермами [14-15]. Однако успешное 
внедрение модели YOLO в условиях 
промышленного рыбоводства требует 
специализированного процесса ее обу-
чения и подготовки представительного 
корпуса данных. Кроме того, необхо-
димо адаптировать ее к специфическим 
особенностям среды, таким как: высо-
кая мутность воды, высокая плотность 
рыбы, вызывающая взаимное перекры-
тие особей, разнообразие размеров и 
видов рыб в одной системе, а также из-

менения освещенности в течение суток 
[16]. Это, в свою очередь, требует каче-
ственного набора изображений, тщатель-
но размеченного на основе данных ре-
альных ферм, а также применения мето-
дов аугментации данных и тонкой на-
стройки модели. 

Исходя из указанных практических 
требований, данное исследование было 
направлено на разработку и обучение 
оптимизированной модели YOLO, адап-
тированной для условий промышленно-
го рыбоводства при подсчете рыбы. В 
статье подробно рассматриваются алго-
ритм обучения модели и результаты 
экспериментов, включая показатели 
точности и полноты обнаружения. В 
разделе 1 представлена методика и ал-
горитм обучения модели YOLO, а так-
же алгоритм подсчета рыбы. В разделе 
2 описаны эксперименты и оценка ре-
зультатов на модели YOLOv9t. 

Материалы и методы 

YOLO – это модель глубокой ней-
ронной сети, разработанная для реше-
ния задачи распознавания объектов на 
изображениях и в видео. Особенностью 
YOLO по сравнению с другими моде-
лями является способность быстро и 
точно определять объекты, одновре-
менно предоставляя информацию об их 
расположении и типе на изображении. 

YOLO использует глубокую ней-
ронную сеть, состоящую из множества 
слоев, включая сверточные слои (CNN) 
[17], которые извлекают признаки из 
изображения. 
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Модель делит входное изображение 

на небольшие сетки (grid cells), каждая 
из которых предсказывает параметры, 
связанные с возможным присутствием 
объекта в этой области, включая: 

• Положение объекта (координаты 
углов ограничивающего прямоугольни-
ка - bounding box). 

• Вероятность наличия объекта (свя-
занную с вероятностью присутствия, на-
пример, рыбы). 

• Класс объекта (например, рыба 
или другие животные). 

Благодаря этому YOLO может рас-
познавать и классифицировать несколь-
ко объектов на одном изображении или 
в видео без необходимости выполнять 
множество отдельных проходов, как это 
делают традиционные модели. 

Для повышения точности и скоро-
сти были разработаны усовершенство-
ванные версии YOLO, последняя из ко-
торых - YOLOv12 [18]. Каждая версия 
содержит значительные улучшения в 
точности распознавания объектов и ско-
рости обработки, особенно в условиях 
видеоанализа. 

Алгоритм обучения модели YOLO  
для подсчета рыб 

Процесс обучения модели нейрон-
ной модели YOLO, предназначенной 
для решения задач обнаружения и под-
счета рыб на изображениях или ви-
деопоследовательностях, представлен 
на рис. 1. На первом этапе проводится 
сбор изображений, после чего создан-
ный корпус разделяется на три незави-

симые части, используемые для различ-
ных этапов разработки модели глубоко-
го обучения. В частности, 80 % изобра-
жений формируют обучающую выбор-
ку, предназначенную для оптимизации 
весовых коэффициентов нейронной се-
ти; 10 % данных составляют валидаци-
онную выборку, служащую для контроля 
и оценки производительности модели в 
процессе обучения, а также для настрой-
ки гиперпараметров и выявления призна-
ков переобучения; оставшиеся 10 % об-
разуют тестовую выборку, применяемую 
для оценки способности модели к обоб-
щению на новых, ранее не встречавших-
ся данных. 

Все изображения после аннотирова-
ния масштабируются до стандартизиро-
ванного разрешения 640×640 пикселей. 
Данный размер является оптимальным и 
широко используется в современных ар-
хитектурах сверточных нейронных сетей, 
применяемых для решения задач обна-
ружения объектов (object detection), 
включая модель YOLO. Выбор такого 
разрешения обеспечивает сохранение до-
статочного количества визуальных при-
знаков при умеренных вычислительных 
затратах, что особенно важно при обуче-
нии на графических процессорах со 
средней производительностью. 

Перед подачей в сеть все изображе-
ния проходят нормализацию интенсив-
ностей пикселей в диапазоне [-1, 1] по-
средством линейного преобразования ис-
ходных значений, находящихся в диапа-
зоне [0, 255]. Этот этап способствует ста-
билизации процесса распространения 
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сигналов по слоям сети, ускоряет сходи-
мость оптимизационного процесса и сни-
жает дисперсию входных данных между 
мини-пакетами изображений. 

Следующим шагом является аугмен-
тация данных [19], направленная на по-
вышение разнообразия обучающей вы-
борки. В рамках данного этапа применя-
ются различные методы преобразования 
изображений, такие как поворот, зеркаль-
ное отражение, изменение яркости и кон-
трастности, масштабирование и трансля-
ция. Использование этих приемов позво-
ляет модели повысить устойчивость к ва-
риациям визуальных условий, улучшить 
способность к обобщению, снизить риск 
переобучения и, как следствие, увели-
чить точность распознавания и подсчета 
рыб в реальных условиях эксплуатации. 

После тщательной подготовки дан-
ных алгоритм переходит к этапу инициа-
лизации числа эпох и размера пакета 
изображений. Число эпох изначально 
устанавливается равным 1, что соответ-
ствует одному полному проходу модели 
по всему обучающему набору данных. 
Размер пакета (количество образцов, по-
даваемых в модель за одну итерацию вы-
числений) также инициализируется, на-
чиная с 1. После инициализации первый 
пакет данных подается на вход нейрон-
ной сети, и модель выполняет расчет па-
раметров на основе этих данных. 

Далее модель осуществляет обна-
ружение рыб на входных изображениях. 
Этот этап является ключевым в процес-
се обучения, так как модель должна 
определить положение рыб на каждом 

изображении, что позволяет вычислить 
соответствующие значения, такие как 
вероятность присутствия рыбы в дан-
ной области. После выполнения детек-
ции модель вычисляет общую функцию 
ошибки путем сравнения предсказан-
ных результатов с истинными значени-
ями из обучающего набора данных. По-
лученная ошибка используется для об-
новления параметров сети. 

Процесс обучения продолжается с 
использованием алгоритма оптимизации 
AdamW [20]. AdamW является эффек-
тивным методом оптимизации, который 
позволяет модели корректировать свои 
параметры таким образом, чтобы функ-
ция ошибки снижалась быстрее. AdamW 
представляет собой усовершенствован-
ную версию алгоритма Adam, включаю-
щую регулярное обновление весов для 
уменьшения переобучения и улучшения 
способности модели к обобщению. После 
этапа оптимизации параметров алгоритм 
вычисляет градиенты функции ошибки и 
обновляет параметры нейронной сети. 

После каждой итерации обучения 
алгоритм проверяет ряд условий для 
принятия решения о продолжении про-
цесса обучения. Сначала проверяется ко-
личество обработанных пакетов изобра-
жений: если оно меньше 64, обучение 
продолжается; если количество пакетов 
достигло M, алгоритм переходит к сле-
дующему этапу. Затем, если значение 
потерь e уменьшается по истечении 
каждых 5 эпох, процесс обучения про-
должается [21]. Обучение длится до до-
стижения максимального количества 
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эпох. В противном случае, если значе-
ние потерь e не уменьшается через 5 
эпох, алгоритм переходит к этапу со-
хранения лучшей модели и завершает 
свою работу. 

Когда количество эпох достигает N, 
алгоритм завершает обучение и выпол-
няет проверку результатов. Если сни-

жение функции ошибки соответствует 
заданным требованиям, модель сохра-
няется. Сохранение модели является 
критически важным этапом, поскольку 
после завершения обучения модель ис-
пользуется для обнаружения рыб на но-
вых изображениях или видео без необ-
ходимости повторного обучения.  

  
Рис. 1. Алгоритм обучения нейронной модели YOLO 

Fig. 1. The YOLO neural model training algorithm 

Алгоритм подсчета рыб на изображении 
и слежения за их движением 

Разработанный алгоритм подсчета 
рыб, представленный на рис. 2, начина-
ется со сбора изображений. После сбора 
данные проходят предварительную об-
работку, включающую масштабирова-

ние изображений до стандартного раз-
мера 640×640 пикселей и нормализа-
цию в диапазоне [-1, 1] с помощью ли-
нейного преобразования, аналогичного 
процессу нормализации, используемому 
при обучении модели.  
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Рис. 2. Алгоритм автоматического подсчета рыб с использованием модели YOLO 

Fig. 2. The automated fish counting algorithm using the YOLO model 

Далее для обнаружения рыб ис-
пользуется заранее обученная модель 
YOLO. При обработке изображения мо-
дель формирует ограничивающие рам-
ки вокруг объектов, распознанных как 
рыбы, и присваивает каждой рамке 
оценку достоверности, отражающую 
точность предсказания. 

Одним из ключевых этапов являет-
ся применение метода Non-Maximum 
Suppression (NMS) [22], который позво-
ляет удалять перекрывающиеся рамки, 
принадлежащие изображению одной и 
той же рыбы. Метод NMS сохраняет 
рамку с наивысшей достоверностью и 
исключает другие рамки, охватываю-
щие тот же объект, обеспечивая, что 
каждый экземпляр рыбы будет обнару-
жен только один раз. 

После определения точных рамок 
каждой рыбе присваивается уникаль-
ный идентификатор (ID) с использова-
нием алгоритма DeepSORT [23], что 
позволяет различать объекты и отсле-
живать движение каждого экземпляра 
через последовательные кадры. 

Данный процесс не только обеспечи-
вает обнаружение и классификацию рыб, 
но и позволяет подсчитывать их количе-
ство путем суммирования всех обнару-
женных ограничивающих рамок. Полу-
ченные результаты сохраняются и отоб-
ражаются в реальном времени, что предо-
ставляет пользователю возможность точ-
но контролировать и оценивать числен-
ность рыб. 

Разработанный алгоритм представ-
ляет собой полностью автоматизирован-
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ный инструмент для подсчета рыб с вы-
сокой точностью, который может быть 
использован в различных практических 
приложениях, таких как мониторинг и 
управление аквакультурой, а также эко-
логические исследования. Благодаря сво-
ей способности быстрой и точной обра-
ботки данных, алгоритм позволяет сокра-
тить человеческое вмешательство в про-
цесс наблюдения и одновременно предо-
ставляет ценную информацию для опти-
мизации процессов разведения рыб. 

Результаты и их обсуждение 

Корпус данных и вычислительное  
оборудование 

Для проведения экспериментальной 
оценки эффективности обученной модели 
YOLO в задаче подсчета рыб на подвод-
ных видеоданных, в данном исследовании 
была применена архитектура YOLOv9t 
[24]. Модель использовалась для детекти-
рования и количественного анализа рыб в 
естественной среде с использованием ча-
сти набора данных DeepFish [25], специ-
ально разработанного для повышения 
производительности распознавания объ-
ектов в подводных условиях. 

Использованный корпус данных 
включает в общей сложности 400 изоб-
ражений с аннотированными объектами 
рыб в сложных условиях съемки. Каж-
дое изображение имеет разрешение 640 
× 640 пикселей, что обеспечивает одно-
родность входных данных для модели 
YOLOv9t. Все изображения снабжены 
аннотациями ограничивающих рамок и 
метками классов, точно определяющи-

ми локализацию и тип рыб в кадре. 
Распределение набора данных состави-
ло 80% для тренировки, 10% для вали-
дации и 10% для тестирования, что 
обеспечивает сбалансированное рас-
пределение для точной оценки произ-
водительности модели. 

Процесс обучения модели YOLOv9t 
осуществлялся на платформе Google Colab 
с использованием графического ускори-
теля Tesla T4, что позволило максимально 
эффективно использовать вычислитель-
ные ресурсы для оптимизации производи-
тельности модели. Размер пакета был ус-
тановлен на 64 изображения, обеспечивая 
эффективное использование памяти GPU. 
Обучение проводилось в течение 50 эпох, 
что позволило модели достичь посте-
пенной сходимости и стабильной про-
изводительности без переобучения. 

Показатели эффективности алгоритмов 

При оценивании эффективности 
функционирования алгоритмов обнаруже-
ния объектов применялись два основных 
аспектах: точности детекции и сложно-
сти модели. Точность детекции измеря-
ется такими метриками, как Точность 
(Precision - P), Полнота (Recall - R) и 
Средняя точность (Average Precision, 
AP), которые оценивают распознающую 
способность модели. С другой стороны, 
сложность модели оценивается через раз-
мер файла весов и общее количество па-
раметров, что отражает уровень потреб-
ления вычислительных ресурсов. В сово-
купности эти факторы определяют про-
изводительность и практическую приме-
нимость модели. 
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Точность определяется как отноше-
ние корректно классифицированных ог-
раничивающих рамок целевых объектов 
к общему количеству обнаруженных ра-
мок, служа ключевым показателем точ-
ности алгоритма детекции объектов. 

Полнота представляет долю кор-
ректно обнаруженных рамок среди обще-
го количества фактических целевых ра-
мок, измеряя степень охвата и способ-
ность алгоритма к извлечению объектов. 

Средняя точность представляет собой 
комплексный показатель оценки, исполь-
зуемый для объективной оценки произво-
дительности моделей детекции объектов 
при различных порогах Пересечения по 
Объединению (IoU). AP вычисляется пу-
тем расчета площади под кривой Точ-
ность-Полнота (Precision-Recall curve). 
Конкретно, для каждой категории объек-
тов набор значений Точности и Полноты 
вычисляется на основе различных порогов 
IoU. Этот набор значений затем интер-
полируется для расчета площади под 
кривой, представляющей AP для данной 
категории. 

mAP-средняя точность (mAP – Mean 
Average Precision) служит комплексным 
метрическим показателем, получаемым 
путем усреднения площадей под кривыми 
Точность-Полнота для различных катего-
рий. mAP является одной из наиболее ши-
роко используемых метрик оценки произ-
водительности в области детекции объек-
тов, обеспечивая интегральную оценку 
Точности и Полноты модели. Обычно 
mAP вычисляется для серии порогов IoU, 
таких как 0.5 и 0.95, для оценки произ-

водительности при различных порого-
вых значениях. 

Предположим, что количество ис-
тинно-положительных образцов в ре-
зультатах прогнозирования обозначает-
ся как TP (True Positives), количество 
ложно-положительных образцов пред-
ставляется как FP (False Positives), а ко-
личество ложно-отрицательных образцов 
указывается как FN (False Negatives), где 
i обозначает категорию в наборе дан-
ных. На основе данных определений, 
уравнения для расчета Точности (P), 
Полноты (R) и Средней Точности (mAP) 
выражаются следующим образом:  

       R=
TP

TP+FN
, 

      P=
TP

TP+FP
, 

      AP= න P(R)dR,
1

0
 

      mAP=
1
N

Σⅈ=1
N APi. 

Экспериментальные результаты 

На рис. 3 представлены кривые по-
терь на обучающей и валидационной вы-
борках, иллюстрирующие процесс схо-
димости модели YOLOv9t в ходе обуче-
ния. Обе кривые демонстрируют устой-
чивую тенденцию к снижению, что сви-
детельствует об эффективном протека-
нии процесса оптимизации и отсутствии 
выраженного переобучения. Стабильная 
производительность модели, отраженная 
в метриках Точность, Полнота и mAP, 
подтверждает ее надежность при реше-
нии задачи обнаружения рыб. 
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Рис. 3. Кривые потерь на обучении и валидации для YOLOv9t 

Fig. 3. Training and validation loss curves for YOLOv9t 
Для всесторонней оценки способно-

сти модели обнаруживать рыбу при раз-
личных порогах уверенности, нами были 

проанализированы посемейные кривые 
F1 (рис. 4). Показатель F1 выступает в 
качестве агрегированной метрики, отра-
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жающей общую производительность мо-
дели посредством балансировки между 
точностью и полнотой. Оптимальное зна-
чение F1, равное 0.93, достигается при по-
роге уверенности приблизительно 0.356, 
что указывает на наилучший баланс меж-
ду точностью и полнотой на данном 
уровне и обусловливает применимость 
модели в приложениях, требующих оп-
тимизации F1-score. 

Эксперименты на наборе данных 
DeepFish с использованием модели 
YOLOv9t показали высокие результаты: 

точность составила 0,928, Полнота –- 
0,91, mAP50 - 0,961, а mAP50-95 - 0,584. 
Эти показатели демонстрируют, что 
YOLOv9t эффективно распознает рыб в 
различных условиях среды, включая 
прозрачную и мутную воду, а также си-
туации с низкой контрастностью. Не-
смотря на то, что такие факторы, как из-
менение освещения или тени, могут сни-
жать качество обнаружения, YOLOv9t 
сохраняет высокую точность и быструю 
обработку. 

 
Рис. 4. Кривая F1-Confidence для модели YOLOv9t 

Fig. 4. The F1-Confidence curve for the YOLOv9t model 
С имеющимися всего 2005603 пара-

метрами и 7,8 GFLOPs, модель YOLOv9t 
превосходит традиционные методы в 
задачах обнаружения и подсчета рыб, 
сочетая высокую производительность с 
оптимальной вычислительной эффек-
тивностью. Результаты экспериментов 
показывают, что модель обеспечивает 

высокую точность обнаружения и под-
счета, особенно когда рыбы не слишком 
скрыты или перемещаются явно в кадре. 
Одним из ключевых факторов, способ-
ствующих высокой точности YOLOv9t, 
является способность быстро и точно 
обрабатывать рамки, ограничивающие 
объекты, минимизируя ошибки в слож-
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ных ситуациях, например, при малых 
размерах объектов или их частичном 
перекрытии другими предметами. 

Кроме того, YOLOv9t демонстри-
рует высокую эффективность в слож-
ных сценариях, таких как присутствие 
нескольких рыб в одном кадре или 
быстрое движение объектов. Методы, 
такие как Non-Maximum Suppression, и 
усовершенствования модели YOLOv9t 
позволяют устранять ложные срабаты-
вания и минимизировать дублирование, 

обеспечивая корректное распознавание 
и подсчет каждой рыбы. 

Для подсчета количества рыб, по-
сле обнаружения и маркировки объек-
тов в каждом кадре, YOLOv9t исполь-
зует алгоритм DeepSORT для присвое-
ния уникального идентификатора каж-
дой рыбе. Этот процесс позволяет от-
слеживать каждую особь на последова-
тельных кадрах без дублирования при 
подсчете. На рис. 5 представлены при-
меры подсчета рыб с использованием 
модели YOLOv9t.  

  

(a) 

 

 

(б) 

Рис. 5. Результаты подсчета рыб с использованием модели YOLO: a – исходные изображения; 
б – изображения после обработки моделью YOLOv9t 

Fig. 5. Fish counting results using the YOLO model: a – original images; б – images after processing 
by the YOLOv9t model 

На изображении модель обнаружи-
вает рыб и выводит результаты подсче-
та 8 и 4, что соответствует действитель-
ности. Результаты показывают, что си-
стема обеспечивает точный подсчет об-

щего количества рыб, одновременно ото-
бражая результаты на пользовательском 
интерфейсе и поддерживая высокую 
производительность на протяжении все-
го процесса обработки. 



Ле В.Н.                  Алгоритм автоматического подсчета рыб на изображении и слежения за их движением... 

Известия Юго-Западного государственного университета / Proceedings of the Southwest State University. 2025; 29(4): 187-203 

199

Полученные результаты эксперимен-
тов продемонстрировали, что YOLOv9t 
является не только мощным инструмен-
том для обнаружения рыб под водой, но 
и эффективным решением для задач 
подсчета рыб в естественной среде. Это 
открывает значительный потенциал для 
применения в таких областях, как эко-
логические исследования, охрана дикой 
природы и управление аквакультурой, 
где отслеживание и мониторинг чис-
ленности рыб имеют критически важ-
ное значение. 

Выводы 

В статье представлен алгоритм обу-
чения модели YOLO и алгоритм автома-
тического подсчета рыб с использовани-
ем модели YOLO. Для тестирования раз-
работанных алгоритмов были проведены 
эксперименты по оценке эффективности 
обученной модели YOLOv9t при реше-
нии задачи обнаружения и подсчета рыб 
на подводных видеозаписях с использо-
ванием стандартного набора данных 
DeepFish. Ключевым фактором успеха 
системы является метод Non-Maximum 
Suppression, который эффективно филь-
трует перекрывающиеся или дублирую-
щиеся области обнаружения, оставляя 
только ограничивающую рамку с наи-
высшей вероятностью для каждого объ-

екта, что делает результаты обнаружения 
более точными и надежными. Экспери-
ментальные результаты служат убеди-
тельным доказательством эффективности 
модели, демонстрируя превосходные по-
казатели: Точность - 0,928, Полнота - 
0,91, mAP50 - 0,961 и mAP50-95 - 0,584. 
Примечательно, что модель YOLOv9t до-
стигает таких впечатляющих показателей 
при крайне оптимизированной архитек-
туре, имея всего 2 005 603 параметра и 
7,8 GFLOPs, что подтверждает ее пре-
имущества не только с точки зрения точ-
ности, но и вычислительной эффективно-
сти, позволяя использовать модель на 
ограниченном аппаратном обеспечении. 
Для задачи подсчета рыб в исследовании 
успешно применен алгоритм DeepSORT. 
После того как YOLOv9t обнаруживает 
объекты в каждом кадре, каждому объек-
ту присваивается уникальный идентифи-
катор. Система затем отслеживает пере-
мещение объектов по последовательным 
кадрам на основе корреляции их положе-
ния, размера и визуальных признаков. 
Интеллектуальное управление жизнен-
ным циклом объектов (отслеживание по-
явления, исчезновения и поддержание 
ID) минимизирует ошибки дублирующе-
го подсчета или пропуска объектов, 
обеспечивая точный и стабильный под-
счет общего числа рыб в видео. 
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