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Резюме 

Цель работы: исследование зависимости между погрешностью данных на входе нейрона, предназна-
ченного для применения в искусственной нейронной сети на ПЛИС, и погрешностью вычислений, а также 
разработка методики выбора разрядности компонентов нейрона, направленной на снижение аппаратных 
затрат при сохранении точности вычислений, адекватной точности исходных данных. 
Методы. В работе использовались методы проектирования цифровых устройств на основе языка описания 
VHDL, анализа погрешностей вычислений относительно эталонной модели с плавающей точкой, а также 
методы синтеза устройств и оценки используемых аппаратных ресурсов ПЛИС встроенные в Xilinx ISE. Для 
обработки результатов применялись методы математической статистики, включая построение регрес-
сионных моделей зависимости точности и аппаратных затрат от разрядности исходных данных. 
Результаты. Предложен вариант оценки разрядности устройства обработки, позволяющий согласовать его 
разрядность с погрешностью исходных данных, исследовано влияние разрядности представления входных 
данных и весовых коэффициентов на точность вычислений и объём занимаемых нейроном аппаратных ресур-
сов, реализованном на ПЛИС. На основе VHDL-описания устройства создана параметризуемая модель, позво-
ляющая согласованно изменять разрядность элементов нейрона при изменении разрядности входных сигналов. 
Для оценки влияния разрядности на точность вычислений использовалась эталонная модель на основе 
арифметики с плавающей точкой. Для каждого варианта разрядности проводились сравнительные вычисле-
ния выходного значения устройства, и рассчитывалась погрешность. Также анализировалось влияние 
разрядности на использование аппаратных ресурсов ПЛИС: количество LUT, регистров (FF). Апробация 
метода проводилась на базе ПЛИС Xilinx Spartan-3E XC3S500E (xc3s50e-4pq208), с использованием среды ISE 
Design Suite 14.7. Были реализованы несколько версий цифрового устройства с разрядностью входных данных 
от 4 до 12 бит (с учётом знакового разряда). Для каждого случая зафиксированы: тактовая частота работы, 
используемые ресурсы ПЛИС, точность измерений. На примере 12-битных исходных данных получена 
экспериментальная оценка объёма таблицы сигмоидальной функции (8192 ячеек), позволяющей достичь 
компромисса между точностью вычислений (максимальная приведенная погрешность – 0,12%) и объёмом 
аппаратных затрат (используется 1% аппаратных ресурсов ПЛИС). 
Заключение. В данной работе представлено описание схемы нейрона с сигмоидальной функцией активации, 
реализованной на языке описания аппаратуры VHDL, пригодной для интеграции в нейросетевые решения на 
программируемых логических интегральных схемах. Устройство принимает входные целочисленные значения 
фиксированной разрядности со знаком, осуществляет вычисление суммы взвешенных входных сигналов и 
смещения и формирует выход нейрона на основе таблицы поиска, хранящейся в блочной памяти (RAM). 
Приведено описание работы модуля, его масштабирование и оптимизация. Предложенный метод позволяет 
определить оптимальную разрядность устройства обработки, обеспечивающий согласованный с погреш-
ностью исходных данных уровень погрешности при минимальных аппаратных затратах. Полученные зави-
симости могут быть использованы на этапе проектирования для выбора параметров цифровых модулей 
обработки информации в системах реального времени и встраиваемых устройствах. 
_______________________ 
 Бондарь О.Г., Брежнева Е.О., Голубев Д.А., 2025 



Бондарь О.Г., Брежнева Е.О., Голубев Д.А.                 Выбор разрядности компонентов нелинейного нейрона ... 

Известия Юго-Западного государственного университета / Proceedings of the Southwest State University. 2025; 29(4): 70-92 

71

 
Ключевые слова: цифровая обработка; искусственный нейрон; вычисления с фиксированной точкой; 
программируемая логическая интегральная схема (ПЛИС); VHDL; разрядность данных; аппаратная реали-
зация; функция активации; таблица активации. 

Конфликт интересов: Авторы декларируют отсутствие явных и потенциальных конфликтов инте-
ресов, связанных с публикацией настоящей статьи. 

Для цитирования: Бондарь О.Г., Брежнева Е.О., Голубев Д.А. Выбор разрядности компонентов нелинейного 
нейрона при реализации на ПЛИС // Известия Юго-Западного государственного университета. 2025; 29(4): 70-92. 
https://doi.org/10.21869/2223-1560-2025-29-4-70-92. 

Поступила в редакцию 09.09.2025   Подписана в печать 03.10.2025   Опубликована 22.12.2025 

 

Choice of component bit width for nonlinear neuron  
implementation on FPGA 

Oleg G. Bondar 1 , Ekaterina O. Brezhneva 1, Dmitry A. Golubev 1 

1 Southwest State University 
50 Let Oktyabrya str. 94, Kursk 305040, Russian Federation 

 e-mail: b.og@mail.ru 

Abstract 

Purpose. Investigation of the relationship between input data error of a neuron intended for use in an artificial neural 
network implemented on FPGA, and computational error, as well as development of a methodology for selecting the 
bit width of neuron components aimed at reducing hardware costs while maintaining computational accuracy 
consistent with the accuracy of the input data. 
Methods. The study employed methods of digital circuit design based on the VHDL hardware description language, 
error analysis of computations relative to a floating-point reference model, as well as device synthesis and FPGA 
resource utilization estimation methods integrated into Xilinx ISE. Mathematical statistics techniques, including the 
construction of regression models describing the dependence of accuracy and hardware costs on input data bit width, 
were applied to process the experimental results. 
Results. A method has been proposed for estimating the bit width of the processing unit, enabling its precision to be 
matched with the inherent error level of the input data. The impact of the bit width of input data and weight 
coefficients on computational accuracy and the amount of FPGA hardware resources consumed by the implemented 
neuron was investigated. Based on the VHDL description of the device, a parameterized model was developed that 
enables coordinated adjustment of the neuron’s internal component bit widths as the bit width of input signals is 
varied. To assess the effect of bit width on computational accuracy, a floating-point-based reference model was used. 
For each bit-width configuration, comparative computations of the device’s output were performed, and the resulting 
error was quantified. The influence of bit width on FPGA resource utilization — specifically the number of LUTs and 
flip-flops (FFs) — was also analyzed. The proposed methodology was validated on the Xilinx Spartan-3E XC3S500E 
(xc3s500e-4pq208) FPGA platform using the ISE Design Suite 14.7 environment. Multiple versions of the digital 
neuron were implemented, with input data bit widths ranging from 4 to 12 bits (including the sign bit). For each 
variant, the operating clock frequency, utilized FPGA resources, and computational accuracy were recorded. 
As a case study using 12-bit input data, an experimental evaluation determined that a sigmoid function lookup table 
with 8,192 entries achieves an optimal trade-off between computational accuracy (maximum relative error — 0.12%) 
and hardware cost (occupying only 1% of the FPGA’s available resources). 
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Conclusion. This paper presents a description of a neuron circuit with a sigmoid activation function, implemented in 
the VHDL hardware description language and suitable for integration into neural network solutions on Field-
Programmable Gate Arrays (FPGAs). The device accepts signed integer input values of fixed bit width, computes the 
weighted sum of inputs and bias, and generates the neuron’s output using a precomputed lookup table stored in 
block RAM. The operation, scaling, and optimization of the module are described in detail. 
The proposed method enables determination of the optimal bit width for the processing unit, ensuring that 
computational error remains consistent with the error level of the input data while minimizing hardware resource 
consumption. The obtained relationships can be utilized during the design phase to select parameters for digital 
processing modules in real-time systems and embedded devices. 
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*** 

Введение  

Использование программно-аппарат-
ных ускорителей на базе программиру-
емых логических интегральных схем 
(ПЛИС) становится всё более актуаль-
ным при решении задач машинного 
обучения, особенно в условиях ограни-
ченных ресурсов и необходимости вы-
сокой производительности на единицу 
энергопотребления [1]. Одним из ключе-
вых элементов таких систем является ис-
кусственный нейрон – базовая вычисли-
тельная единица, реализующая операции 
скалярного произведения и применения 
функции активации. Актуальность аппа-
ратной реализации ИНС на ПЛИС под-
черкивается конкретными применения-
ми, например, эффективной и эконо-
мичной реализацией нейронной сети на 
ПЛИС для цифрового предыскажения 
(DPD) в многоканальных (MIMO) систе-
мах связи, где критически важны одно-
временно высокая пропускная способ-

ность, малое время отклика и рациональ-
ное использование аппаратных ресурсов 
[2]. Такая реализация позволяет решать 
практические инженерные задачи, такие 
как линеаризация усилителей мощности 
в базовых станциях сотовых сетей, что 
требует высокой скорости обработки и 
эффективного использования доступных 
ресурсов ПЛИС.  

Дальнейшее расширение областей 
применения аппаратных ускорителей на 
ПЛИС включает даже экстремальные ус-
ловия, например, космические миссии, 
где ценятся такие характеристики ПЛИС, 
как радиационная стойкость, энергоэф-
фективность и гибкость. Как показыва-
ет обзор, ПЛИС рассматриваются как 
перспективная платформа для реализа-
ции нейронных сетей, способных выпол-
нять задачи автономных операций, ана-
лиза данных сенсоров и сжатия данных 
непосредственно на борту космических 
аппаратов [3]. Анализ существующих 
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подходов, представленный в работах, по-
добных обзору [4], подтверждает расту-
щий интерес к оптимизации архитектур и 
методов реализации нейронных сетей на 
ПЛИС, направленных на достижение 
максимальной эффективности и энерго-
экономичности для разнообразных при-
ложений. 

Реализация нейронных сетей и дру-
гих нелинейных устройств цифровой 
обработки на ПЛИС является одной из 
актуальных задач в области встраивае-
мых систем и распределённых вычис-
лений (эдж-компьютинг) [5]. Искус-
ственный нейрон может быть реализо-
ван различными способами: от простых 
сумматоров и умножителей до сложных 
параллельных архитектур с конвейер-
ной обработкой. Среди известных ре-
шений можно выделить работы, в кото-
рых используются VHDL/Verilog для 
проектирования параметризуемых мо-
дулей, поддерживающих различные ти-
пы активации и форматы представления 
чисел [6]. Анализ существующих под-
ходов к аппаратной реализации, вклю-
чая обзоры открытых инструментов [7], 
подчеркивает важность оптимизации 
базового вычислительного элемента – 
отдельного искусственного нейрона. По-
вышение точности вычислений на уровне 
отдельного нейрона, например, путем 
выбора подходящей функции активации, 
оптимизации разрядности представления 
данных или минимизации ошибок округ-
ления, является критически важным для 
обеспечения общей точности и надежно-
сти работы всей нейронной сети. 

Функция активации является одним 
из самых ресурсоёмких этапов вычис-
ления нейрона. Одним из эффективных 
способов её реализации является исполь-
зование внешней таблицы (LUT), храня-
щейся в блочной памяти ПЛИС. В рабо-
тах [1,8] представлено описание цифро-
вого нейрона с использованием блочной 
памяти для реализации функции актива-
ции. Такой подход позволяет исключить 
дорогостоящие операции возведения в 
степень или деления, характерные для 
сигмоидальной функции, за счёт предва-
рительного расчёта таблицы значений. 
Это делает возможным снижение аппа-
ратных затрат и задержки вычисления 
функции активации.   

Как отмечается в работе [9], реали-
зация традиционных функций актива-
ции, таких как гиперболический тан-
генс и сигмоида, на ПЛИС может быть 
ресурсоемкой из-за необходимости вы-
полнения сложных операций, таких как 
возведение в степень (exp) и деление 
(1/x), что может приводить к высокой 
задержке. В этой же работе рассматри-
вается применение блочной памяти 
(LUT) для аппроксимации функции ги-
перболического тангенса. Такой подход 
позволяет обойти сложные вычисления, 
снижая аппаратные затраты и уменьшая 
вычислительную задержку.  

Одним из ключевых направлений 
снижения аппаратных затрат является 
уменьшение разрядности используемых 
данных [10,11]. Многие исследования 
показывают, что переход от 32-битных 
чисел с плавающей точкой к 8- или да-
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же 4-битным числам с фиксированной 
точкой позволяет значительно сокра-
тить использование DSP-блоков и реги-
стров без существенной потери точно-
сти модели [12,13]. В [14] показано, что 
снижение разрядности может значи-
тельно уменьшить использование ре-
сурсов ПЛИС (например, уменьшение 
LUT на более чем 40% при переходе с 8 
бит до 4 бит) с минимальной потерей 
чувствительности. Актуальность точно-
го и эффективного квантования подчер-
кивается необходимостью обеспечения 
гарантий точности, особенно в задачах 
регрессии и критически важных прило-
жениях. В работе [15] представлена ме-
тодология и программный инструмен-
тарий (Aster), которые позволяют авто-
матически определять оптимальное рас-
пределение разрядности (назначать сме-
шанную точность) для представления 
чисел с фиксированной точкой в ней-
ронной сети. Инструмент строго гаран-
тирует, что совокупная ошибка округ-
ления на выходе сети не превысит за-
данную пользователем границу. Это 
особенно важно для применения ней-
ронных сетей в системах управления и 
других задачах, где точность вычисле-
ний критична. Дальнейшее развитие ме-
тодов квантования, включая разработку 
алгоритмов с настраиваемой точностью, 
таких как описанный в работе [16], где 
представлен алгоритм квантования с фик-
сированной точкой и регулируемой точ-
ностью для сверточных нейронных сетей, 
направлено на оптимизацию потока дан-
ных внутри сети и повышение эффектив-

ности использования ресурсов FPGA без 
ущерба для производительности. 

Для количественной оценки влия-
ния разрядности на точность вычисле-
ний применяются методы сравнения ре-
зультатов работы с фиксированной точ-
кой с эталонными значениями, полу-
ченными с помощью вычислений с пла-
вающей точкой [13]. При этом прово-
дится статистическая обработка ошибок 
– вычисление средней абсолютной и 
относительной погрешностей, диспер-
сии и доверительных интервалов.  

Анализ существующих подходов к 
аппаратной реализации нейронных се-
тей на ПЛИС показывает, что важными 
особенностями ПЛИС являются парал-
лелизм и конвейеризация [17]. Благода-
ря параллелизму можно многократно 
распределять и вычислять ресурсы, ко-
гда несколько модулей могут работать 
независимо, одновременно. Конвейериза-
ция делает аппаратные ресурсы многора-
зовыми, что может значительно улуч-
шить параллельную производительность. 
Однако, как отмечается в ряде работ, в 
условиях ограниченных ресурсов ПЛИС 
эти подходы могут быть недоступны 
или менее эффективны [8]. Например, в 
[18] для повышения вычислительной 
эффективности и минимизации исполь-
зования ресурсов логических элементов 
(LUTs) и триггеров (flip-flops) приме-
няются методы, такие как введение кон-
вейерных регистров между промежу-
точными операциями и совместное ис-
пользование арифметических операций 
(сложение, сдвиг) для разных вычисле-
ний нейронов. 
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Эффективность аппаратных ускори-
телей на ПЛИС подтверждается много-
численными исследованиями, демон-
стрирующими их превосходство в энер-
гоэффективности и задержке по сравне-
нию с традиционными процессорами и 
графическими ускорителями (GPU) для 
целого ряда задач ИНС, особенно в усло-
виях ограниченных ресурсов [19]. Гиб-
кость архитектуры ПЛИС позволяет адап-
тировать аппаратную реализацию под 
конкретную модель и сценарий использо-
вания, что делает их привлекательным 
выбором для разработки специализиро-
ванных решений в области машинного 
обучения. 

Таким образом, наряду с квантова-
нием и оптимизацией функций актива-
ции, методы структурной оптимизации, 
такие как конвейеризация и параллелизм, 
играют важную роль в разработке эффек-
тивных аппаратных ускорителей на 
ПЛИС. Однако, как показывает практика 
[15, 16], в условиях ограниченных ресур-
сов поиск оптимального баланса между 
производительностью, точностью и ап-
паратной сложностью требует комплекс-
ного подхода, включающего все ука-
занные методы. 

В работах [20,21] предлагаются ав-
томатизированные методы определения 
оптимальной разрядности, основанные 
на машинном обучении и статистиче-
ском анализе. В [20] описан метод авто-
матизированного гетерогенного кванто-
вания, который оптимизирует разряд-
ность отдельных слоев или операций глу-
бокой нейронной сети. Этот подход поз-

воляет находить баланс между точно-
стью модели и задержкой, используя 
методы анализа чувствительности и оп-
тимизации. В работе [21] авторы охва-
тывают широкий спектр методов кван-
тования, включая адаптивные и автома-
тизированные подходы, направленные 
на поиск оптимальной конфигурации 
разрядности для минимизации потерь 
точности при снижении вычислитель-
ной сложности и объема памяти. Такие 
автоматизированные методы позволяют 
эффективно снижать аппаратные затра-
ты без существенной потери качества 
модели. 

Использованный авторами статьи 
подход основывается на использовании 
информации о погрешности исходных 
данных, а гибкая и параметризуемая мо-
дель нелинейного единичного нейрона 
позволяет: исследовать влияние разряд-
ности устройств обработки данных на 
погрешность вычислений, оценить объём 
используемых аппаратных средств кон-
кретной ПЛИС, использовать получен-
ные данные для обоснованного выбора 
разрядности на этапе проектирования. 

Точность обработки данных, объем 
аппаратных средств и производитель-
ность – конкурирующие характеристи-
ки при построении цифровых устройств 
обработки данных. Известным спосо-
бом повышения быстродействия и уп-
рощения устройств является примене-
ние целочисленной математики. При 
этом ограничение разрядности вычис-
лителей оправданно ограниченной точ-
ностью исходных данных. В работе пока-
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зана взаимосвязь разрядности компонен-
тов искусственного нейрона образующих 
каскадную структуру. Демонстрация под-
хода осуществляется на примере ПЛИС 
Xilinx Spartan-3E XC3S500E, и иллю-
стрирует его эффективность в условиях 
жестких ограничений аппаратных ре-
сурсов. 

Приведены выражения, позволяю-
щие произвести оценку разрядности сту-
пеней вычислителя, результаты оценки 
аппаратных затрат и погрешности вы-
числений при разной разрядности исход-
ных данных, подтверждённые модели-
рованием. 

Материалы и методы 

Математическая основа метода ба-
зируется на формуле скалярного произ-
ведения с последующим добавлением 
смещения и нелинейным преобразова-
нием через функцию активации:   

1
( )

N

i i
i

y f x w b


  , 

где xi – входные значения; wi – весовые 
коэффициенты; b – смещение; f() – функ-
ция активации (в данном случае сигмо-
ида), реализованная через таблицу, хра-
нящуюся в блочной памяти ПЛИС. 

В данной статье представлена 
VHDL-модель нелинейного нейрона, 
поддерживающая: 

– обработку нескольких входных 
сигналов; 

– учет весовых коэффициентов и 
смещения; 

– нелинейное преобразование выхо-
да с использованием табличного пред-
ставления сигмоидальной функции; 

– настройку разрядности входных 
сигналов, весовых коэффициентов и 
промежуточных результатов. 

Структурная схема устройства пред-
ставлена на рис. 1. 

Она включает следующие основные 
компоненты: 

 [k*INPUT_WIDTH] – вектор входных 
сигналов фиксированной разрядности; 

 [k*WEIGHT_WIDTH]–- вектор весо-
вых коэффициентов; 

 Multiplier Array – массив умно-
жителей для вычисления произведений 
входных сигналов и весов и формати-
рования результата (отсечение младших 
разрядов и конкатенация для исключе-
ния последующего переполнения); 

 Summation Unit – сумматор про-
изведений и смещения; 

 Address Generator – преобразует 
сумму в адрес для таблицы активации; 

 Activation Table – хранит предва-
рительно вычисленные значения сигмо-
идальной функции активации для по-
ложительных значений аргумента; 

 Output value Generator – фор-
мирует значение сигмоидальной функ-
ции и преобразование беззнакового це-
лого в знаковое.  

Модель нейрона параметризуема и 
может быть адаптирована под различные 
задачи за счет изменения параметров об-
щего назначения: количества входов ней-
рона (INPUT_SIZE), разрядности входных 
сигналов (INPUT_WIDTH), разрядности ве-
совых коэффициентов (WEIGHT_WIDTH). 
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Рис. 1.  Структурная схема нелинейного нейрона на ПЛИС 

Fig. 1. Structural diagram of a nonlinear neuron implemented on an FPGA 

Функционирование устройства: 
1. Умножение входов на веса. Для 

каждого входа выполняется операция 
умножения соответствующего значения 
на связанный весовой коэффициент. Ре-
зультат умножения хранится во вре-
менном массиве. Для снижения разряд-
ности результата умножения использу-
ется усечение младших разрядов произ-
ведения с сохранением знака.  

2. Суммирование результатов. По-
сле умножения все произведения сум-
мируются с учетом знака и переполне-
ния, смещение предварительно норми-
руется.  

3. Формирование адреса для табли-
цы активации. В качестве адреса RAM, 
хранящей таблицу функции активации, 
принимается абсолютное значение сум-

мы. При этом используется свойство 
симметрии сигмоидальной функции, что 
уменьшает объём памяти, необходимой 
для хранения таблицы в два раза.  

Значения функции активации для 
положительных значений аргумента 
вычисляются заранее и из внешнего 
файла загружаются в блочную память 
ПЛИС. Это позволяет избежать слож-
ных вычислений в реальном времени и 
повысить производительность системы.  

4. Верификация и оптимизация. Для 
целей анализа и тестирования предусмот-
рены отладочные сигналы. 

Для реализации максимального бы-
стродействия и с учётом ограниченных 
ресурсов ПЛИС все вычисления осуще-
ствляются в формате с фиксированной 
точкой. 



Информатика, вычислительная техника и управление / Computer science, computer engineering and control 

Известия Юго-Западного государственного университета / Proceedings of the Southwest State University. 2025; 29(4): 70-92 

78
Разработанная VHDL- модель может 

быть адаптирована под параллельную 
обработку с использованием конвейера 
для ускорения выполнения операций, до-
пускает простую замену функций акти-
вации изменением содержимого табли-
цы в блочной RAM и заменой форми-
рователя выходного значения. 

В коде предусмотрены отладочные 
сигналы, которые позволяют наблюдать 
промежуточные значения (например, 
произведения входных данных на весо-
вые коэффициенты), что облегчает те-
стирование и поиск ошибок. 

Для каждого варианта разрядности 
входных данных и весов (3-7-9-11), со-
ответствующих дифференциальным ре-
жимам распространённых 8-10-12 раз-
рядных АЦП, производился синтез 
VHDL-описания устройства в среде ISE 
Design Suite 14.7. Фиксировались мет-
рики использования аппаратных ресур-
сов ПЛИС: количество LUT (програм-
мируемая таблица истинности), количе-
ство регистров (FF), определялась так-
товая частота после размещения конфи-
гурируемых логических блоков и трас-
сировки схемы. Таблицы LUT и реги-
стры FF  два базовых ресурса ПЛИС, 
которые используются для реализации 
любой цифровой логики. Именно по-
этому они считаются ключевыми мет-
риками при сравнении аппаратных за-
трат. Эти параметры позволяют оценить 
зависимость «разрядность – точность – 
аппаратные затраты» [2]. 

Набор входных сигналов, весов и 
смещений генерировался случайным об-

разом в диапазоне 0-1. Для сгенериро-
ванных значений одновременно вычис-
лялись рефренсные значения выходных 
сигналов с использованием арифметики с 
плавающей запятой. Для ПЛИС вход-
ные значения преобразовывались к цело-
численным, требуемой разрядности пред-
варительным масштабированием (умно-
жением исходного числа на 2n-1, где n – 
разрядность данных без знака) и пере-
водом в двоичную систему счисления. 

Выходной сигнал VHDL- модели 
нейрона делился на 2l-1, где l – разряд-
ность значений функции активации 
нейрона. Полученные значения ( VHDLy ) 

сопоставлялись с референсными значе-
ниями ( floaty ). Рассчитывалась погреш-

ность, приведенная к максимальному 
значению: 

max

100%VHDL floaty y
y




  . 

Для моделирования и отладки уст-
ройства использовался интегрирован-
ный с ISE Design Suite симулятор ISim. 
На основе полученных данных строи-
лись линейные регрессионные зависи-
мости между разрядностью и приведен-
ной погрешностью вычислений. 

Методика определения разрядности 
компонентов нейрона. Предлагаемый ва-
риант оценки разрядности компонентов 
модели нейрона ориентирован на обра-
ботку измерительной информации ис-
кусственной нейронной сетью и бази-
руется на том, что разрешающая спо-
собность измерительных устройств со-
гласуется с их погрешностью. Исходя 
из этого, целочисленный нормирующий 
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множитель для преобразования предва-
рительно нормированных входных дан-
ных, представленных в диапазоне [0, 1], 
выбирается так, чтобы единица млад-
шего разряда соответствовала приве-
дённой погрешности измерений.  Сиг-
моидальная функция активации рассчи-
тывается по следующей формуле:   

1
1 sy

e


,
 

где 
1

k
i iS x w bias   ;  k – число вход-

ных параметров нейрона.  
Оценим максимально допустимый 

шаг табличного представления сигмои-
дальной функции, обеспечивающий раз-
решение функции, соответствующее раз-
решению входных данных. Максималь-
ное значение производной от сигмои-
дальной функции достигается при зна-
чении аргумента s = 0 и равно: 

 2
max

0

1
41

s

s

s

dy e
ds e







    
  

.
   

При этом допустимое абсолютное 
приращение функции при максималь-
ном шаге аргумента Smax: 

max
max

1
4 2n

sy 
   ,

 
где n – разрядность нормированных ис-
ходных данных в двоичной системе 
счисления. Отсюда можно определить 
максимально допустимый шаг аргумен-
та при табулировании функции: 

max max 2

4 14
2 2n ns y      .

 
Выразим переменную s в уравне-

нии сигмоидальной функции через це-
лочисленные значения нового аргумен-

та, при этом новый аргумент интерпре-
тируется как номер строки, табулиро-
ванной функции: 

22n

xs  .
 

Объём таблицы следует ограничить 
максимальным значением аргумента, 
при котором значение функции отлича-
ется от 1 меньше, чем на величину аб-
солютной погрешности (которая соот-
ветствует разрядности исходного пред-
ставления входных данных): 

max
2

max

2

1 11
2

1 n
x ny

e 


  


.
 

Отсюда следует: 
max

22 1
2

n
x

ne 


  ,     

а xmax определяется из: 
xmax > 2n-2 n ln2 = 0,693147 2n-2n,        (1) 
где xmax – это максимальное значение ал-
гебраической суммы взвешенных вход-
ных данных и смещения, которому ста-
вится в соответствие максимальное зна-
чение аргумента, и при котором значе-
ние ymax отличается от единицы не бо-
лее чем на 1/2n.  

Альтернативно максимальное зна-
чение аргумента может выбираться в 
соответствии с выражением 

max
max 2 8 9

2n

xs    ; 

2
max (8 9) 2nx    .                            (2) 

Следует учитывать, что максималь-
ное значение аргумента сигмоидальной 
функции должно быть достижимо, по-
тому максимальное значение взвешен-
ных сумм и смещения должно быть га-
рантировано равно, или больше xmax. 
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Максимальное значение хmax определя-
ется разрядностью входных данных n и 
их количеством: 

22 log ( 1)2
max (2 1)( 1) 2 2 kn nх k      , 

где k – количество входных параметров, 
а единица учитывает смещение.  

Оно достигается при k > 1. При 
значениях xmax, превышающих условия 
(1) или (2), значение функции принима-
ется равным максимальному. 

Поскольку количество входов сум-
матора определяется количеством пара-
метров, влияющих на значение функции, 
то для исключения переполнения разряд-
ной сетки сумматор должен иметь коли-
чество дополнительных разрядов  

2log ( 1)m k    . 

Таблица сигмоидальной функции за-
полняется целочисленными масштаби-
рованными значениями.   

   (2 1)nY x y x  . 

В силу симметрии сигмоидной функ-
ции относительно точки (0, 0.5) её зна-
чения при отрицательном значении ар-
гумента определяются как: 

 ( ) 1y s y x   .  

Поэтому  

     ( ) max 2 1nY x Y Y x Y x      . (3) 

Предлагаемый вариант оценки оп-
тимального объема памяти (разрядно-
сти адреса) для табличной реализации 
сигмоидальной функции с учетом раз-
рядности входных данных исследован 
экспериментально. 

Результаты и их обсуждение 

В табл. 1 представлены результаты 
исследования зависимости приведённой 
погрешности (δ) модели нелинейного 
нейрона и аппаратных затрат в виде 
таблиц поиска (LUT) и триггеров (FF) 
от разрядности исходных данных. Сле-
дует отметить, что при анализе аппа-
ратных затрат учитывалось наличие до-
полнительных отладочных сигналов в 
коде, что приводит к повышенному рас-
ходу ресурсов, но не влияет на законо-
мерность зависимости ресурсопотреб-
ления от разрядности данных. При мак-
симальной разрядности исходных дан-
ных процент затрачиваемого оборудо-
вания от общих ресурсов ПЛИС состав-
ляет всего 1%, что особенно важно для 
встраиваемых устройств и встроенных 
вычислительных систем с ограничен-
ными возможностями. 

Таблица 1. Зависимость погрешности и аппаратных ресурсов от разрядности входных данных 

Table 1. Dependence of error and hardware resources on input data bit-width 

Разрядность 
/ Bit depth 

LUT / (%) FF / (%) δ, % 
Тактовая частота, МГц / 

Clock frequency, MHz 
4 55 86 12,02 138,274 
8 70 129 1,04 92 
10 79 143 0,34 85 
12 81 (1%) 147 (1%) 0,1 130,174 
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При ссылке на разрядность далее 
учитывается и дополнительный знако-
вый разряд. 

На рис. 2-9 представлены гистограм-
мы распределений абсолютных ошибок, 
представляющие собой зависимость ча-
стостей (f) от абсолютной погрешности 

(∆), и графики, демонстрирующие раз-
брос приведенной погрешности () для 
разрядности исходных данных 4-8-10-
12 (М – порядковый номер измерения).  

На рис. 10 представлен график за-
висимости приведенной погрешности 
от разрядности исходных данных.  

 
Рис. 2.  Гистограмма распределений абсолютных ошибок (w =4) 

Fig. 2. Histogram of absolute error distributions (w = 4) 

 

 
Рис. 3. Разброс приведенных погрешностей (w =4, δmax – 12,02%) 

Fig. 3. Scatter plot of relative errors (w = 4, δmax = 12.02%) 
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Рис. 4. Гистограмма распределений абсолютных ошибок (w =8)  

Fig. 4. Histogram of absolute error distributions (w = 8) 

 
Рис. 5. Разброс приведенных погрешностей (w =8, δmax – 1,4%) 

Fig. 5. Scatter plot of relative errors (w = 8, δmax = 1.4%); 

 
Рис. 6. Гистограмма распределений абсолютных ошибок (w =10) 

Fig. 6. Histogram of absolute error distributions (w = 10) 
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Рис. 7. Разброс приведенных погрешностей (w =10, δmax – 0,34%) 

Fig. 7. Scatter plot of relative errors (w = 10, δmax = 0.34%) 

 
Рис. 8. Гистограмма распределений абсолютных ошибок (w =12) 

Fig. 8. Histogram of absolute error distributions (w = 12) 

 
Рис. 9. Разброс приведенных погрешностей (w =12, δmax – 0,10%) 

Fig. 9. Scatter plot of relative errors (w = 12, δmax = 0.10%) 
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Рис. 10. Зависимости приведенной погрешности от разрядности исходных данных  

Fig. 10. Dependence of relative error on input data bit-width 

Проведено усреднение результатов 
многократных измерений при различных 
наборах входных данных и весов, что поз-
волило повысить достоверность получен-
ных зависимостей. Величина максималь-
но приведённой погрешности уменьшает-
ся экспоненциально, что объясняется фун-
даментальными свойствами квантования 
данных и соответствует результатам, 
представленным в [1-4]. Объём исполь-
зуемых аппаратных средств (LUT и FF) 
растёт с увеличением разрядности, но 
скорость роста замедляется, что связано с 
более эффективной оптимизацией при 
высокой разрядности. Частота снижается 
с ростом разрядности, но затем снова воз-
растает, так как при высокой разрядности 
(12 бит) синтезатор эффективнее оптими-
зирует логику, что приводит к возобнов-
лению роста частоты. При средней раз-
рядности (10 бит) наблюдается макси-
мальное снижение частоты из-за увеличе-
ния глубины комбинационных путей. 

Для демонстрации влияния объема 
памяти (М) табличной реализации сиг-
моидальной функции на погрешность 
выходных данных (δ, %) представлены 
результаты экспериментальных иссле-
дований при фиксированной разрядно-
сти беззнакового целого равного 11 
разрядам (табл. 2). 

Таблица 2. Влияние объёма памяти на погреш-
ность вычисления выходного значения 

Table 2. Influence of memory size on output value 
computation error 

Количество ячеек памяти (М) /  
Number of memory cells (M) 

δ, % 

16384 0,1 
8192 0,12 
4096 0,2 
2048 0,34 

 

График зависимости погрешности 
вычисления выходного значения нели-
нейного нейрона от количества ячеек па-
мяти (M) при фиксированном значении 
разрядности исходных данных представ-
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лен на рис. 11. При расчётном значении 
шага дискретизации 1/512, что соответ-
ствует объёму таблицы 4096 значений, 
уменьшение шага в 4 раза приводит к 
уменьшению максимального значения 
погрешности вычислений лишь в 2 раза. 
Сокращение объёма таблицы сигмоид-
ной функции активации достигается как 
за счёт её симметрии, так и за счёт вы-
бора оптимального шага дискретиза-
ции. При этом восстановление значений 
функции при отрицательных значениях 
аргумента требует дополнительных 
операций в соответствии с выражением 
(3). Для этого необходим переход от 
беззнакового целого к целому со зна-
ком, вычитание и коммутация на выход 
значения функции соответствующего 

знаку аргумента. Помимо этого, в зави-
симости от знака аргумента, следует с 
помощью коммутатора выбрать одно из 
двух значений. Ускорение и сокраще-
ние оборудования при выполнении этих 
операций достигается за счёт того, что 
значение функции активации при отри-
цательном значении аргумента может 
быть получено поразрядной инверсией 
табличного значения 

 ( ) ~Y x Y x  , 

что реализуется с помощью логических 
элементов сложения по модулю 2, на 
первые входы которых подаются разря-
ды табличного значения, а на объеди-
нённые вторые входы знак аргумента.      

 
Рис. 11. Зависимость погрешности вычисления выходного значения от количества ячеек памяти (M) 

Fig. 11. Dependence of output value computation error on the number of memory cells (M) 
 

При погрешности исходных дан-
ных, соответствующей 11-битному раз-
решению, оптимальным является ис-
пользование 8192 ячеек памяти, позво-
ляющее достигнуть компромисс между 

точностью вычислений и затрачивае-
мыми аппаратными ресурсами. 

Анализ существующих исследова-
ний в области квантования нейронных 
сетей для аппаратной реализации на 



Информатика, вычислительная техника и управление / Computer science, computer engineering and control 

Известия Юго-Западного государственного университета / Proceedings of the Southwest State University. 2025; 29(4): 70-92 

86
ПЛИС показывает, что основное вни-
мание уделяется оценке влияния пони-
женной точности представления дан-
ных (весов, активаций) на общую точ-
ность работы сетей в целом. Многие 
работы, такие как [5, 10, 21] и исследо-
вания, посвященные бинарным/низко-
битным сетям [10, 22] демонстрируют, 
что переход от 32-битной арифметики с 
плавающей точкой к 8-, 4-, 2- или даже 
1-битной целочисленной арифметике 
позволяет значительно сократить ис-
пользование аппаратных ресурсов и 
энергопотребление с минимальной по-
терей точности на прикладных задачах, 
таких как классификация изображений 
или обработка сигналов. Например, ра-
боты по бинаризации [10,13] показыва-
ют, что сети могут сохранять высокую 
эффективность (например, точность 
классификации >90% на MNIST) при 
использовании всего 1-2 бит для пред-
ставления весов и активаций. Методы, 
такие как FINN – для синтеза с низко-
битным квантованием, или Aster – не-
равномерного квантования, фокусиру-
ются на автоматизации процесса кван-
тования для сетей, обеспечивая либо 
высокую скорость вывода, либо гаран-
тии точности в пределах допустимой 
погрешности для конкретной задачи. 
Однако эти исследования, в основном, 
оценивают точность и эффективность 
на уровне всей сети или слоев, приме-
няя квантование как часть оптимизации 
модели или архитектуры сети для кон-
кретных приложений. 

В настоящей работе акцент сделан 
на оптимизацию квантования на уровне 
отдельного нейрона как базового вы-
числительного элемента нейронной се-
ти, приводятся теоретические обосно-
вания и результаты экспериментальных 
исследований влияния квантования на 
вычислительную точность VHDL-моде-
ли нейрона. Подход, предложенный в 
статье [23], где исследуются различные 
модели нейронов на основе аналоговых 
решений с пакетной нормализацией, 
косвенно подчеркивает значимость точ-
ности самого вычислительного блока. 
Аналогично, работа [14] показывает, что 
разрядность данных (включая весовые 
коэффициенты и функцию активации, 
которые обрабатываются внутри нейро-
нов) напрямую влияет на ресурсы ПЛИС 
и производительность системы (напри-
мер, снижение разрядности весов с 8 до 
4 бит уменьшило использование LUT 
более чем на 40% с минимальной поте-
рей чувствительности).  

Строгое квантование с гарантиями 
ошибки, как в Aster [15], также подра-
зумевает анализ ошибок на уровне эле-
ментарных операций, происходящих в 
нейроне (Aster оптимизирует разряд-
ность до 4-16 бит, гарантируя общую 
ошибку меньше заданного порога).  

Таким образом, оптимизация само-
го нейрона, как элементарной ячейки 
вычислений, представляется важным и 
логически обоснованным шагом. По-
вышение точности вычислений на этом 
уровне может кумулятивно улучшить 
точность всей сети, особенно в глубо-
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ких архитектурах, где ошибки могут 
накапливаться. Фокусировка на оди-
ночном нейроне позволяет детально ис-
следовать и минимизировать вносимую 
ошибку, что может привести к более 
предсказуемому и надежному поведе-
нию сетей, реализованных на ресурсно-
ограниченных устройствах. 

Выводы 

В отличие от большинства работ, в 
которых оптимизация проводится либо по 
точности, либо по ресурсам, в данной ра-
боте предложен интегрированный подход, 
позволяющий учитывать оба параметра 
одновременно. Это даёт возможность на-
ходить оптимальное значение разрядно-
сти, при котором погрешность вычисле-
ний остаётся в допустимых пределах, а 
аппаратные затраты минимальны. 

В работе получена экспоненциальная 
регрессионная модель, позволяющая про-
гнозировать уровень погрешности вы-
числения выходного значения устройства 
цифровой обработки в зависимости от 
используемой разрядности. Это делает 
возможным автоматизированный выбор 
параметров вычислителя на этапе проек-
тирования. Погрешность вычислений оди-
ночного нейрона для 12-разрядных исход-
ных данных находится на уровне 0,1%. 

Все исследования проводились с ис-
пользованием реального синтеза на ПЛИС 
Xilinx Spartan 3E XC3S500E, что обеспе-
чивает высокую достоверность результа-
тов и возможность их прямого примене-
ния в практике проектирования. 

В ходе исследования был разрабо-
тан и применён метод оценки влияния 
разрядности представления входных 
данных и весовых коэффициентов на 
точность вычислений и объём занимае-
мых аппаратных ресурсов в цифровом 
устройстве обработки, реализованном 
на ПЛИС, применяемом при реализации 
искусственного нейрона. На основе 
VHDL-описания нейрона была создана 
параметризуемая модель, позволяющая 
изменять разрядность входных сигна-
лов и весовых коэффициентов в требу-
емом диапазоне. Экспериментально 
подтверждена предложенная авторами 
аналитическая зависимость, позволяю-
щая определить оптимальный объем 
памяти (разрядность адреса) для таблич-
ной реализации сигмоидальной функции 
с учетом требуемой погрешности вычис-
лений и разрядности входных данных. 
Оптимальным является использование 
8192 ячеек памяти, позволяющее достиг-
нуть компромисс между точностью вы-
числений (δmax=0,12%) и затрачиваемы-
ми аппаратными ресурсами. 

В результате исследований получе-
на базовая модель для дальнейшей ав-
томатизации и оптимизации нелинейно-
го цифрового устройства на ПЛИС, 
идентичная одиночному нейрону, осо-
бенно в условиях ограниченных ресурсов 
и необходимости минимизации энерго-
потребления и площади кристалла.  

Предложенная реализация, осно-
ванная на последовательной обработке 
данных и использовании знаковых чи-
сел, ориентирована на минимизацию 
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ресурсов, что делает её особенно акту-
альной для бюджетных ПЛИС, где па-
раллелизм и конвейеризация недоступны, 
модель также может быть использована в 
системах, при реализации спецвычисли-
телей с фиксированной точкой, где кри-
тична экономия ресурсов и энергии.  

В отличие от подавляющего боль-
шинства работ, где автоматизация реа-

лизована на уровне системного проек-
тирования, предложенная модель поз-
воляет автоматизировать выбор разряд-
ности на уровне отдельного нейрона, 
что упрощает масштабирование и инте-
грацию в более сложные системы и мо-
жет быть использована во встраивае-
мых устройствах. 
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