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Резюме 

Целью исследования является получение числовых значений появления резонанса исследуемой конст-
рукции и оценка влияния количества сварных швов на резонанс рабочего колеса промышленного вентиля-
тора в программном комплексе APM FEM. 
Методы. В данной статье используется расчет методом конечных элементов сварной конструкции рабо-
чего колеса промышленного вентилятора в программном комплексе APM FEM для КОМПАС-3D v23.0.0.8. 
Конструкция моделировалась в программе КОМПАС V23, сварные швы конструкции по ГОСТ 14771–76-Т3 
смоделированы с помощью приложения «Неразъемные соединения». В местах расположения сварных швов 
применено преобразование швов в тело, для учета их при генерации сетки конечных элементов. 
Результаты. На основании проведённого анализа можно утверждать, что конструкция обладает высоким 
запасом вибрационной устойчивости при номинальных нагрузках. Увеличение количества сварных швов с двух до 
четырёх на каждую лопатку рабочего колеса промышленного вентилятора при проектировании конструк-ции, 
незначительно повышает значения появления резонанса. Таким образом, конструкция может быть 
рекомендована к изготовлению с минимальным количеством сварных швов, а именно по два на каждую лопатку. 
Заключение. Проведённый анализ сварной конструкции рабочего колеса промышленного вентилятора с 
использованием программного комплекса APM FEM показал, что при исследовании на наличие собственных 
частот, конструкция сохраняет прочностную и геометрическую устойчивость, а полученные числовые 
значения появления резонанса сильно превышают значения, возможные при эксплуатации. Для варианта с 
двумя швами на лопатку собственные частоты пяти первых форм составили: 357,42; 363,01; 363,36; 365,73 и 
367,13 Гц. Для варианта с четырьмя швами соответствующие частоты составили: 383,33; 391,77; 394,39; 
396,63 и 397,18 Гц. Полученные числовые значения предполагаемого вхождения в резонанс соответствуют 
требованиям нормативных документов. 

 
Ключевые слова: сварная конструкция; собственные частоты; резонанс; вибрационная устойчивость; 
программный комплекс APM FEM; рабочее колесо промышленного вентилятора. 
_______________________ 
 Григоров И. Ю., Казаков Д. Ю., 2025 
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Abstract 

Purpose of the study is to obtain numerical values for the occurrence of resonance of the studied structure and to 
evaluate the influence of the number of welds on the resonance of the impeller of an industrial fan in the APM FEM 
software package. 
Methods. This article uses the finite element method (FEM) analysis of a welded industrial fan impeller structure 
using the APM FEM software package for KOMPAS-3D v23.0.0.8. The structure was modeled using KOMPAS V23, 
and the welds were modeled using the "Permanent Joints" application in accordance with GOST 14771–76-T3. Weld-
to-solid conversion was applied to the weld locations to account for them when generating the finite element mesh. 
Results. Based on the analysis, it can be concluded that the design has a high vibration resistance margin under 
nominal loads. Increasing the number of welds from two to four per blade of the industrial fan impeller during design 
slightly increases the resonance risk. Therefore, the design can be recommended for manufacturing with a minimum 
number of welds, namely two per blade. 
Conclusion. An analysis of the welded structure of an industrial fan impeller using the APM FEM software package 
showed that when examined for the presence of natural frequencies, the structure retains its strength and geometric 
stability, and the obtained numerical values of resonance occurrence significantly exceed the values possible during 
operation. For the variant with two welds per blade, the natural frequencies of the first five modes were 357.42; 
363.01; 363.36; 365.73 and 367.13 Hz. For the variant with four welds, the corresponding frequencies were 383.33; 
391.77; 394.39; 396.63 and 397.18 Hz. The obtained numerical values of the expected occurrence of resonance 
comply with the requirements of regulatory documents. 

 
Keywords: welded structure; natural frequencies; resonance; vibration resistance; APM FEM software package; 
industrial fan impeller. 
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Введение 

Современные промышленные венти-
ляторы представляют собой сложные кон-
струкции, работающие в условиях высо-
ких динамических нагрузок и вибрацион-
ных воздействий. Одним из ключевых 
элементов, определяющих надёжность и 
долговечность таких машин, является ра-
бочее колесо – узел, подверженный зна-
чительным нагрузкам в процессе эксплуа-
тации. Эксплуатация рабочих колёс про-
мышленных вентиляторов сопровождает-
ся воздействием переменных аэродина-
мических нагрузок и вибрационных коле-
баний, интенсивность которых определя-
ется режимом вращения и конструктив-
ными особенностями изделия. При этом 
одним из ключевых факторов, влияющих 
на надёжность и долговечность узла, яв-
ляется его вибрационная устойчивость. 
Важнейшей задачей на этапе проекти-
рования и верификации конструкции 
колеса является оценка его вибрацион-
ной устойчивости, что особенно акту-
ально для изделий, эксплуатируемых 
вблизи или в пределах потенциальных 
резонансных частот. 

Одновременно с техническими тре-
бованиями на первый план выходит и 
производственная эффективность. При 
серийном изготовлении подобных узлов 
экономически важна оптимизация техно-
логических операций – в частности, про-
цессов сварки, как одного из ключевых 
способов соединения элементов конструк-
ции. Использование автоматизирован-

ных и роботизированных сварочных 
комплексов, позиционеров и вращате-
лей значительно повышает точность и 
повторяемость сварки, однако наклады-
вает определенные издержки на число, 
расположение и протяжённость сварных 
швов. В этой связи особое значение при-
обретает обоснованный выбор компо-
новки швов, обеспечивающей не только 
достаточную прочность и жёсткость кон-
струкции, но и соответствие требованиям 
производственного процесса.  

Особое внимание уделяется выбору 
конструктивного варианта, оптимально-
го с точки зрения вибрационной устой-
чивости и технологичности. В качестве 
основного критерия безопасности ис-
пользуется спектр собственных частот 
конструкции, рассчитываемый методом 
конечных элементов. В работах [1-4] 
описаны методы проведения подобных 
испытаний, однако малоизученным явля-
ется вопрос об изменении собственных 
частот конструкции в целом, учитывая все 
сварные швы и их количество в конструк-
ции. Собственные частоты конструкций 
подобного типа, являются одним из важ-
нейших параметров при производстве и 
эксплуатации, что обусловливает боль-
шое количество научных исследований в 
этой области [5–11]. 

Объектом исследования выступает 
сварная конструкция рабочего колеса, 
включающая диск, лопаточный аппарат 
и элементы крепления, выполненные 
посредством сварных соединений [12-
14]. Особое внимание уделяется методо-
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логии сварки и рациональности кон-
струкции, так как именно эти параметры 
в значительной мере определяют уровень 
динамических напряжений и вероятность 
возникновения резонансных явлений. 

Конструкция рабочего колеса про-
мышленного вентилятора представлена 
на рис. 1.  

В условиях промышленной эксплуа-
тации возможен широкий диапазон частот 
возбуждающих воздействий, что делает 
необходимым определение собственных 
частот рабочего колеса. Решение данной 
задачи позволяет выявить критические 
режимы работы и минимизировать риск 
разрушения конструкции [15-17].  

 
Рис. 1. Конструкция рабочего колеса промышленного вентилятора 

Fig. 1. Industrial fan impeller design 
Целью настоящего исследования яв-

ляется получение численных значений 
резонанса и оценка влияния конфигура-
ции сварных швов на динамические ха-
рактеристики рабочего колеса промыш-
ленного вентилятора. 

Материалы и методы  

Исследуемая конструкция представ-
ляет собой рабочее колесо промышлен-
ного вентилятора, включающее цен-
тральную ступицу, верхний и нижний 
диски, а также двенадцать лопаток, рав-

номерно распределённых по окружно-
сти. Конструкция выполнена из стали 
Ст3сп по ГОСТ 380–2005, обладающей 
механическими характеристиками, до-
статочными для работы в условиях уме-
ренных механических и вибрационных 
нагрузок. Соединение элементов модели-
ровалось сварными швами типа Т3 по 
ГОСТ 14771–76, конфигурация которых 
варьировалась в зависимости от рассмат-
риваемого варианта конструкции. 

Моделирование конструкции про-
водилось в системе КОМПАС-3D V23 с 
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использованием приложения «Неразъ-
ёмные соединения». Для учёта геомет-
рии сварных швов при генерации ко-
нечно-элементной сетки швы преобра-
зовывались в твердотельные элементы. 
Анализ выполнялся методом конечных 
элементов (МКЭ) в программном ком-
плексе APM FEM для КОМПАС-3D (вер-
сия 23.0.0.8) с целью определения соб-
ственных частот конструкции и выявле-
ния потенциальных резонансных диапа-
зонов, представляющих опасность при 
эксплуатации. 

В рамках исследования рассматрива-
лись два варианта конструкции: лопатки 
с двумя продольными сварными швами, 
расположенными с одной стороны, и ло-
патки с четырьмя швами – по два с каж-
дой стороны. Геометрическая модель во 
всех вариантах оставалась идентичной, 
изменения касались исключительно ко-
личества сварных швов.  

Созданная трёхмерная модель кон-
струкции рабочего колеса промышленно-
го вентилятора показана на рис. 2. 

 
Рис. 2. Трехмерная модель рабочего колеса 

промышленного вентилятора 

Fig. 2. 3D model of an industrial fan impeller 

Для дискретизации использовалась 
тетраэдральная конечно-элементная сетка 
10-узлового типа с числом элементов бо-
лее 110 000, что обеспечивало достаточ-
ную детализацию распределения масс и 
жёсткостей, включая зоны сварных со-
единений. 

Граничные условия моделирования 
включали полное закрепление по трём 
степеням свободы на одной из граней 
ступицы и закрепление по нормали на 
противоположной грани, имитируя ре-
альные условия крепления рабочего ко-
леса на валу вентилятора. Для каждого 
варианта конструкции проводился мо-
дальный анализ – расчёт спектра соб-
ственных частот без внешнего возбуж-
дения. Особое внимание уделялось пер-
вой и ближайшим формам колебаний, 
обладающим наибольшей вероятностью 
совпадения с рабочей частотой вращения 
вентилятора. В расчётах учитывались 
инерционные и геометрические характе-
ристики всех элементов конструкции, 
включая зоны сварных соединений. 

Закрепление модели – ограничение 
перемещения и вращения относительно 
координатных осей Х, Y, Z показано на 
рис. 3.  

Параметры сетки конечных элемен-
тов представлены в табл. 1. 

Внешний вид сгенерированной сет-
ки конечных элементов представлен на 
рис. 4. 

В качестве материала для конструк-
ции рабочего колеса промышленного 
вентилятора в приложении APM FEM 
для КОМПАС-3D v23.0.0.8 был принят 
материал, свойства которого приведены 
в табл. 2. 
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В рамках численного моделирова-
ния виброустойчивости рабочего колеса 
промышленного вентилятора были по-
лучены эпюры 5 форм собственных ко-
лебаний (рис. 5). 

Числовые значения появления ре-
зонанса конструкции при исследовании 
собственными частотами в программ-
ном комплексе APM FEM приведены в 
табл. 3. 

Таблица 1. Параметры сетки конечных элементов 

Table 1. Finite element mesh parameters 

Наименование параметра / Parameter Name Значение параметра / Parameter value  
Тип элементов Твердотельные 10-узловые тетраэдры 
Средняя длина стороны элемента, мм 40 
Коэффициент сгущения на поверхности 1.2 
Коэффициент разрежения в объеме 1.5 
Количество конечных элементов 110887-113058 
Количество узлов  223799-229394 

 

 
Рис. 3. Закрепление модели рабочего 

колеса промышленного вентилятора 

Fig. 3. Fixing the industrial fan impeller model 

 
Рис. 4. Внешний вид сетки конечных элементов 

Fig. 4. Finite element mesh appearance 

Таблица 2. Свойства материала конструкции 

Table 2. Properties of the construction material 

Предел текучести, Н/мм2 /  Yield strength, N/mm2 235 
Предел прочности при растяжении, Н/мм2 410 
Модуль упругости нормальный Н/мм2 200000 
Коэффициент Пуассона 0,3 
Массовая плотность, кг/м3 0.000008 
Предел выносливости при растяжении, Н/мм2 209 
Предел выносливости при кручении, Н/мм2 139 
Удельная теплоемкость Дж/(кг*C°)  462 
Теплопроводность Вт/(C°*мм) 0.055 
Температурный коэффициент линейного расширения 1/ C° 0.000012 
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1 1а 

  
2 2а 

  
3 3а 

  
4 4а 

  
5 5а 

Рис. 5. Эпюры: 1-5 –  формы собственных колебаний конфигурации конструкции по два шва  
на лопатку; 1а-5а –  формы собственных колебаний конфигурации конструкции  
по четыре шва на лопатку 

Fig. 5. Diagrams: 1-5 – natural vibration modes of the design configuration with two welds per blade;  
1a-5a – natural vibration modes of the design configuration with four welds per blade 
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Таблица 3. Числовые значения появления резонанса конструкции 

Table 3. Numerical values of the occurrence of structural resonance 

№ 
Частота (Гц) (2 шва) /  

Frequency (Hz) (2 seams) 
Частота (Гц) (4 шва) /  

Frequency (Hz) (4 seams) 
1 357.42 383.33 
2 363.01 391.77 
3 363.36 394.39 
4 365.73 396.63 
5 367.13 397.18 

 
На рис. 5 приведены эпюры первых 

пяти форм собственных колебаний рабо-
чего колеса вентилятора для двух вари-
антов схемы сварки лопаток. Эпюры 1–5 
соответствуют варианту с двумя про-
дольными швами на лопатку, эпюры 1а–
5а – варианту с четырьмя швами. Для 
каждого варианта отображены зоны ми-
нимальных и максимальных перемеще-
ний элементов конструкции, полученные 
в результате модального анализа в про-
граммном комплексе APM FEM. 

Для варианта с двумя швами на ло-
патку собственные частоты пяти первых 
форм составили 357,42; 363,01; 363,36; 
365,73 и 367,13 Гц. Для варианта с че-
тырьмя швами соответствующие частоты 
составили 383,33; 391,77; 394,39; 396,63 и 
397,18 Гц. Наблюдается смещение спек-
тра собственных частот в область более 
высоких значений при увеличении числа 
сварных соединений, что обусловлено 
ростом общей жёсткости конструкции. 
Полученные данные свидетельствуют о 
повышении виброустойчивости рабочего 
колеса при использовании четырёх швов 
на лопатку и снижении вероятности воз-

никновения резонансных колебаний при 
эксплуатации. 

Результаты и их обсуждение 

Проведённый модальный анализ поз-
волил оценить влияние конфигурации 
сварных швов на динамические характе-
ристики рабочего колеса промышленно-
го вентилятора. В качестве основного 
параметра оценки использовалась пер-
вая собственная частота конструкции – 
критически важный показатель, харак-
теризующий минимально возможную 
частоту возникновения резонансных ко-
лебаний1. 

В варианте конструкции с двумя 
сварными швами на одну сторону каж-
дой лопатки (далее – упрощённая схе-
ма) первая собственная частота соста-
вила 357.4 Гц, при этом вторая и третья 
модальные формы – 363.0 Гц и 363.4 Гц 

 
1 ГОСТ 30630.1.1-99/ Методы испытаний на 

стойкость к механическим внешним воздейству-
ющим факторам машин, приборов и других тех-
нических изделий, М., 1999; ГОСТ 31350–
2007 (ИСО 14694:2003) / Вибрация. Вентиляторы 
промышленные. Требования к производимой виб-
рации и качеству балансировки. М., 2007. 
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соответственно. Диапазон первых пяти 
форм колебаний находился в пределах 
357.4–367.1 Гц, что гарантирует высо-
кий запас по вибрационной устойчиво-
сти при реальной рабочей частоте вра-
щения вентилятора 25–33 Гц (соответ-
ствующей 1500–2000 об/мин). 

В варианте с четырьмя сварными 
швами на каждую лопатку (по два с 
каждой стороны) наблюдался рост пер-
вой частоты до 383.3 Гц, а верхняя гра-
ница первых пяти форм достигала 397.2 
Гц. Несмотря на это повышение, отно-
сительное увеличение первой частоты 
составило около 7,2 %, что в инженер-
ной практике не считается существен-
ным при наличии более чем десятикрат-
ного запаса по частотам. Повышение 
жёсткости конструкции, обусловленное 
симметричным усилением соединений, 
дало линейный, но не значительный при-
рост модальных характеристик. 

Изменение спектра собственных ко-
лебаний сопровождалось и увеличением 
сложности модальных форм. Так, во вто-
ром варианте наблюдаются выраженные 
локальные формы колебаний в зонах 
сопряжения швов и лопаток, что указы-
вает на перераспределение жесткостных 
акцентов конструкции. Однако, как по-
казал численный анализ, концентрация 
модальной энергии остаётся преимуще-
ственно в пределах ступицы и крепле-
ния лопаток, а не в зоне сварных швов, 
что подтверждает надёжность соедине-
ний даже при упрощённой схеме. 

С точки зрения производства, упро-
щённая схема является предпочтитель-

ной. При выполнении двух продольных 
швов с одной стороны на каждой лопатке 
общее количество сварных операций 
снижается в два раза. Таким образом, не-
смотря на наблюдаемый прирост частот 
в случае четырёх швов, конструкция с 
двумя сварными соединениями на ло-
патку показывает полную вибрацион-
ную безопасность (первая частота более 
чем в 10 раз превышает максимальную 
рабочую), оставаясь при этом произ-
водственно эффективной. С инженер-
ной и технологической точек зрения, 
такой вариант конструкции следует 
считать оптимальным. 

Выводы 

На основании результатов модаль-
ного анализа установлено, что конфи-
гурация сварных швов оказывает за-
метное влияние на динамическое пове-
дение рабочего колеса промышленного 
вентилятора. В частности, увеличение 
количества сварных соединений на 
каждой лопатке приводит к росту пер-
вой собственной частоты конструкции, 
что связано с повышением её общей 
жёсткости и перераспределением мо-
дальных форм. 

Для варианта с двумя продольными 
сварными швами на одну сторону ло-
патки первая собственная частота со-
ставила 357.4 Гц, в то время как для 
конфигурации с четырьмя швами (по 
два с каждой стороны) этот показатель 
достиг 383.3 Гц. Несмотря на различие 
в частотах, в обоих случаях значения 
значительно превышают рабочий диа-
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пазон возбуждающих частот при экс-
плуатации похожих изделий, что свиде-
тельствует об отсутствии риска резо-
нансных явлений в реальных условиях 
эксплуатации. 

Результаты исследования подтвер-
ждают, что при проектировании свар-
ных вращающихся конструкций необ-
ходимо учитывать влияние конфигура-
ции соединений на модальный спектр. 
Даже при сохранении общей геометрии 
изделия изменение топологии сварки 
способно приводить к смещению соб-
ственных частот и трансформации форм 
колебаний, что должно быть учтено на 

стадии конструкторской проработки и 
расчётной верификации. Метод конеч-
ных элементов в комплексе APM FEM 
показал высокую эффективность для 
анализа подобных задач и может быть 
рекомендован для оценки динамической 
надёжности сварных конструкций в ма-
шиностроении. 

Учитывая вышеизложенное, свар-
ную конструкцию рабочего колеса про-
мышленного вентилятора с двумя свар-
ными швами на каждую лопатку, мож-
но считать устойчивой к возникнове-
нию резонанса. 
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