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Резюме 

Цель исследования. Разработка максимально эффективного, в контексте современных технических средств 
реализации интеллектуальных систем, предназначенных, в т.ч., для решения задач распознавания образов, 
алгоритма самообучения двухслойной модели нейронной сети, который будет основан на наращивании числа 
нейронов и вариации весовых коэффициентов синаптических связей, с возможностью распространения 
его на многосвязную нейронную сеть высокого порядка с внутренним произведением векторов. 
Методы. Для решения поставленной задачи в данной работе предложен подход к синтезу многосвязной 
модели нейронной сети высокого порядка с внутренним произведением векторов, а также алгоритм 
самообучения такой нейронной сети, предусматривающий оперативную коррекцию элементов матрицы 
эталонов вместо традиционной вариации весовых коэффициентов синаптических связей с целью 
снижения ресурсоёмкости выполняемых операций. 
Результаты. Предложенный метод был реализован в виде программного приложения в привязке к само-
обучению нейронной сети высокого порядка на звукотипах речевых сигналов, представленных в растровом 
виде с предварительной их сегментацией из общего потока и преобразованием в полярных координатах с 
целью удобства обработки и хранения полученных образов в качестве обучающей выборки. 
Заключение. Разработанный алгоритм в ходе проведения тестирования его программной реализации, за 
счёт исключения ресурсоёмкой операции вариации весовых коэффициентов и заменой её на непосредственную 
коррекцию матрицы эталонов, показал достаточно высокую эффективность, сходимость за конечное число 
шагов, обусловленную ограничением количества кодов первого приближения эталонных векторов, а также 
заметное быстродействие по сравнению с известными аналогами. 
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Abstract 

Purpose of reseach. To develop a self-learning algorithm for a two-layer neural network model that is as efficient as 
possible, given the current technical implementation of intelligent systems, including those designed for solving 
pattern recognition problems. This algorithm will be based on increasing the number of neurons and varying the 
weight coefficients of synaptic connections, with the possibility of extending it to a high-order multiconnected neural 
network with an internal product of vectors. 
Methods. To solve this problem, this paper proposes an approach to synthesizing a high-order multiconnected neural 
network model with an internal product of vectors, as well as a self-learning algorithm for such a neural network. This 
algorithm provides for the rapid correction of the elements of the reference matrix, instead of the traditional variation 
of the weight coefficients of synaptic connections, in order to reduce the resource intensity of the performed 
operations. 
Results. The proposed method was implemented as a software application linked to the self-training of a high-order 
neural network using speech sound types represented in raster format, pre-segmented from the general stream and 
transformed into polar coordinates for ease of processing and storing the resulting images as a training set. 
Conclusion. The developed algorithm, during software implementation testing, demonstrated relatively high 
efficiency by eliminating the resource-intensive operation of varying weight coefficients and replacing it with direct 
correction of the reference matrix. This algorithm demonstrated relatively high efficiency, convergence in a finite 
number of steps due to the limited number of first-approximation codes of reference vectors, and noticeable 
performance compared to known analogs. 
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*** 

Введение 

Известные алгоритмы самообучения 
моделей нейронных сетей с внешним 
произведением векторов основаны на ва-

риации весовых коэффициентов синап-
тических связей [1, 2]. В современных 
моделях нейронных сетей высокого по-
рядка с внутренним произведением век-
торов, обладающих высокой информа-
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ционной ёмкостью при хранении силь-
нокоррелированных образов, весовые 
коэффициенты не хранятся в памяти, а 
вычисляются косвенно при имитации 
переключения нейронной сети в резуль-
тате двух последовательных умножений 
векторов на одну и ту же матрицу эта-
лонных векторов [3, 4]. Математическое 
описание модели такой нейронной сети 
высокого порядка в режиме имитации 
переключения после снятия входного 
вектора активизации имеет вид: 

C = (X*) || V ||,                            (1) 
Y = C(n) || V ||t, 
xi = sign (yi + i),  

1,i N , xi {+1, –1}, 
где X – N-мерная строка компонент 
входного вектора; Y – N-мерная строка 
компонент вектора мембранного потен-
циала; xi – i-я компонента входного век-
тора; yi – i-я компонента вектора мем-
бранного потенциала; α – N-мерная 
строка компонент вектора коэффициен-
тов взвешивания компонент входного 
вектора; X*α – покомпонентное произ-
ведение векторов; ‖V‖ – прямоугольная 
матрица размером N×M элементов эта-
лонных векторов, где M – число эталон-
ных векторов; ‖V‖t – обозначение транс-
понированной матрицы; C – M-мерная 
строка компонент вектора степеней 
сходства входного взвешенного вектора 
(X*α) с каждым Vj, 1,j M ; C(n) – по-
компонентное возведение вектора С в 
степень n, где n – порядок модели 
нейронной сети; θi – порог i-го нейрона; 
N – число нейронов в модели нейрон-
ной сети. 

Компонента αi вектора взвешивания 
α равна: 

1

11 / ,

1, , 1, , { 1, 1},

M

i ij
j

ji

MM

i N j M

 





  

    

 (2) 

где vij – i-я компонента j-го эталонного 
вектора Vj. 

Так как в памяти данной модели 
нейронной сети высокого порядка хра-
нятся только компоненты vij эталонных 

векторов Vj, 1,j M , традиционный 
способ её обучения и самообучения пу-
тём вариации весовых коэффициентов, 
вычисляемых при известных эталонах 
по формуле: 

1
, , 1,

M

ik ij k jk
j

i k N   


            (3) 

приводит к большим потерям времени 
на прямое и обратное преобразование 
матрицы эталонов ‖V‖ в матрицу ‖γ‖ весо-
вых коэффициентов синаптических свя-
зей с промежуточным изменением γik по 
алгоритму обучения [5, 6]. Кроме того, 
известное выражение (3) справедливо 
только для нейронной сети первого по-
рядка и существенно усложняется в 
нейронной сети высокого порядка при 
n>1 [7, 8]. 

Материалы и методы 

В связи с вышеизложенным в дан-
ной работе предлагается развитие алго-
ритма самообучения модели нейронной 
сети, основанного на наращивании чис-
ла нейронов и последующей вариации 
весовых коэффициентов {γik}, и распро-
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странение его на многосвязную модель 
нейронной сети высокого порядка с внут-
ренним произведением векторов [9, 10]. 
Предлагаемый алгоритм отличается от 
известных исключением ресурсоемкой 
операции вариации весовых коэффици-
ентов и заменой её на непосредственную 
коррекцию матрицы эталонов ||V||. 

Используя известный критерий по-
добия [11, 12] как скалярное произведе-
ние нормированных векторов активиза-
ции нейронной сети и её отклика, пред-
лагаемый алгоритм самообучения ней-
ронной сети высокого порядка выпол-
няется за следующие два этапа. На пер-
вом этапе в память эталонов данной 
нейронной сети вносятся в качестве ко-
дов первого приближения эталонных 
векторов входные векторы обучающей 
выборки до тех пор, пока величина ска-
лярного произведения нормированных 
векторов (ai*) очередного вектора обу-
чающей выборки и вектора отклика 
наиболее активного i*-го нейрона не 
превысит установленного порога b кри-
терия их подобия при 0,5<b<1, а именно 
ai*>b, т.е. до появления успешного откли-
ка хотя бы одного i*-го нейрона [13, 14]. 

На втором этапе во всех случаях, 
когда ai*>b, выполняется коррекция 
компонент vji, накопленных в памяти 
кодов первого приближения эталонных 
векторов без дальнейшего увеличения 
их количества m. При этом учитывается 
число pi* успешных откликов i*-го 
наиболее активного нейрона за всё вре-
мя самообучения на основе проверки 
двух систем неравенств: 

*

*
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*
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где aэj – критерий подобия скалярного 
произведения j-го кода первого при-
ближения и данного вектора обучаю-
щей выборки; 

aci – критерий подобия скалярного 
произведения нормированных векторов 
i*-го столбца и другого i-го столбца 
матрицы накопленных кодов первого 
приближения в пределах подмножества 
строк, удовлетворяющих первому нера-
венству. 

Тем самым выделяются ji-е элемен-
ты матрицы ||V|| эталонных векторов, 
подлежащие коррекции на данном шаге 
самообучения, а их значения заменяют-
ся значениями i-x компонент xi данного 
вектора обучающей выборки. 

Каждый шаг самообучения на каж-
дом очередном векторе обучающей вы-
борки начинается с образования векто-
ра отклика Xo всей замкнутой модели 
нейронной сети (1) на данных Х вход-
ного вектора. В качестве претендентов 
на наибольшую активность выбираются 
те нейроны, на выходе которых были 
образованы положительные компонен-
ты вектора отклика Xo. Наиболее ак-
тивный i*-й нейрон выделяется из них 
путём: 

– последовательного опроса разомк-
нутой модели нейронной сети одноком-
понентными входными векторами вида: 

X1i = (0 ... 0 xi
0 0...0) при xi

0 > 0;    (4) 
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– нахождения по каждому из них 

выходного вектора отклика Yi разо-
мкнутой модели; 

– выделения в их последовательно-
сти {Yi} одного i*-го, наиболее близко-
го по скалярному произведению к дан-
ному вектору обучающей выборки: 

* по по
max{ } max i

i ii i i

YXa a
X Y 

     
  

.      (5) 

где XYi – скалярное произведение век-
торов; 

X – длина вектора, вычисляемая по 
формуле 

2

1
.

N

i
i

X x



                                    

(6) 
Тем самым стимулируется повыше-

ние адекватности ответов наиболее ак-
тивного нейрона на близкие векторы 
обучающей выборки, принадлежащие од-
ному и тому же классу образов, а в ходе 
самообучения зарождается и подкрепля-
ется центр активности данного класса об-
разов, присутствующих во входной по-
следовательности вышеозначенных векто-
ров [15, 16]. Причём в памяти, хранящей 
матрицу ||V|| корректируемых эталонных 
векторов, может быть создано большое 
количество центров активности сильно-
коррелированных образов, которое, бла-
годаря повышению порядка модели ней-
ронной сети и взвешиванию компонент 
входного вектора, существенно превыша-
ет возможности модели Хопфилда. 

Словесная формулировка одного 
шага алгоритма самообучения модели 
нейронной сети высокого порядка на 

одном очередном входном векторе обу-
чающей выборки: 

1. Определяется и запоминается век-
тор отклика Xo замкнутой модели ней-
ронной сети на данный входной вектор Х 
обучающей выборки. 

2. Выделяется подмножество нейро-
нов- претендентов на наибольшую ак-
тивность по критерию: xi

o > 0. 
3. Находится наиболее активный i*-й 

нейрон путём последовательного опроса 
разомкнутой модели нейронной сети од-
нокомпонентными входными векторами 
вида (4), определения по каждому из них 
выходного вектора Yi и выделения в их 
последовательности {Yi} одного i*-го, 
наиболее близкого к данному вектору 
обучающей выборки по максимуму мно-
жества скалярных произведений норми-
рованных векторов (5, 6). 

4. Проверяется установленный по-
рог критерия подобия: ai*≤b. Если ai*>b, 
переход к п. 6. 

5. В память модели записывается 
данный вектор обучающей выборки Х в 
ка-честве очередного эталонного векто-
ра матрицы эталонов ||V||, а затем пере-
ход к п. 12. 

6. Увеличивается на единицу число 
pi* успешных откликов i*-го наиболее 
активного нейрона: 

pi*:= pi*+1. 
7. Вычисляется вектор скалярного 

произведения данного вектора обучаю-
щей выборки и всех m накопленных ко-
дов первого приближения в матрице ||V|| 
эталонов: 
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 
где первый множитель – это матрица ||V|| 
накопленных к данному шагу обучения 
кодов первого приближения, представ-
ленная в виде столбца нормированных 
эталонных векторов-строк; m – число 
кодов первого приближения, накоплен-
ных в матрице ||V|| к данному шагу обу-
чения. 

8. Выделяется подмножество строк 
{j1} матрицы ||V||, элементы которых 
целесообразно варьировать в данном 
шаге обучения по критерию: 

*
1

*
, 1 { }.

(1 )
i

эj
i

pa j j
p

 


                  (7) 

9. Вычисляются критерии подобия 
i*-го столбца выделенного в п. 8 под-
множества строк {j1} матрицы ||V|| с дру-
гими столбцами этого же подмножества 
строк как их скалярное произведение: 

2 2
1 1 * 1 1

1 1 1 * 1 * *

1 1
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10. Выделяется подмножество 
столбцов {i1} матрицы ||V||, элементы 
которых целесообразно варьировать в 
пределах подмножества {j1} в данном 
шаге обучения по критерию: 

*
1

*
, 1 {i}.

(1 )
i

ci
i

pa i
p

 


                     (8) 

11. Корректируется jlil-e элементы 
мат-рицы ||V|| путем замены их на il-e 

компоненты данного вектора обучаю-
щей выборки: 

vjlil : = xil. 
12. Вычисляется новый вектор α ко-

эффициентов взвешивания компонент 
входного вектора по элементам моди-
фицированной матрицы эталонов ||V|| и 
замещается старый вектор α предыду-
щего шага обучения по формуле (2), где 

– М = m при переходе по п.п. 11,12; 
– М = m + 1 при переходе по п.п. 

5,12. 
13. Конец шага обучения. 

Результаты и их обсуждение 

Фрагмент кода [17, 18] представ-
ленного алгоритма, реализованного на 
языке программирования Java, приве-
ден на рис.1. Сходимость представлен-
ного алгоритма обусловлена ограниче-
нием числа m кодов первого приближе-
ния эталонных векторов, накапливаемых 
в памяти модели нейронной сети на пер-
вом этапе, а также постепенным умень-
шением степени модификации элементов 
матрицы ||V|| без изменения числа m. На 
втором этапе по мере увеличения числа 
pi* возрастают длины обучающих выбо-
рок, а выражение в правой части соответ-
ствующих неравенств (7, 8) при большом 
числе шагов обучения выглядит следую-
щим образом: 

pi*/(1 + pi*) → 1. 
При этом коррекция матрицы ||V|| 

прекращается, так как значения крите-
риев подобия в левой части неравенств 
не превышают единицы: 

аэj ≤ 1, acj ≤ 1. 
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// Параметры алгоритма 
private static final double B = 0.8; // Порог критерия подобия 
private static final double[][] V = new double[/* количество эталонов */][/* размер 
входного вектора */]; // матрица эталонов 
private static final int[] p = new int[/**/]; // массив счетчиков успешных откликов 
private static final double[] alpha = new double[/**/]; // коэффициенты взвешивания 
private static final double[] x = new double[/**/]; // текущий входной вектор 
// Метод для нормализации вектора 
    private static double[] normalize(double[] vec) { 
        double norm = 0.0; 
        for (double v : vec) { 
            norm += v * v;} 
        norm = Math.sqrt(norm); 
        double[] normalized = new double[vec.length]; 
        for (int i = 0; i < vec.length; i++) { 
            normalized[i] = vec[i] / norm;} 
        return normalized;} 
// Метод для вычисления скалярного произведения двух векторов 
    private static double dotProduct(double[] v1, double[] v2) { 
        double sum = 0.0; 
        for (int i = 0; i < v1.length; i++) { 
            sum += v1[i] * v2[i];} 
        return sum;} 
// Основной метод шага обучения 
    public static void trainStep(double[] xInput) { 
// 1. Определяем и запоминаем вектор отклика Xo модели на вход X 
        double[] normalizedX = normalize(xInput); 
        double[] Xo = new double[V.length]; // вектор отклика 
        for (int i = 0; i < V.length; i++) { 
            double[] normalizedV = normalize(V[i]); 
            Xo[i] = dotProduct(normalizedV, normalizedX);} 
// 2. Выделяем подмножество нейронов-претендентов с Xo > 0 
        int iStar = -1; 
        double maxActivation = -Double.MAX_VALUE; 
        for (int i = 0; i < Xo.length; i++) { 
            if (Xo[i] > 0 && Xo[i] > maxActivation) { 
                maxActivation = Xo[i]; 
                iStar = i;}} 
        if (iStar == -1) { 
            return;} 
// 3. Находим наиболее активный нейрон i* по скалярному произведению 
        int selectedNeuron = -1; 
        double maxScalarProduct = -Double.MAX_VALUE; 
        for (int i = 0; i < V.length; i++) { 
            double[] normalizedV = normalize(V[i]); 
            double scalarProd = dotProduct(normalizedV, normalizedX); 
            if (scalarProd > maxScalarProduct) { 
                maxScalarProduct = scalarProd; 
                selectedNeuron = i;}} 
// 4. Проверяем критерий подобия ai* <= b 
        double aiStar = maxScalarProduct; // предполагаем, что это мера подобия 
        if (aiStar > B) { 
            return;} 
// 5. Запись входного вектора в матрицу эталонов ||V|| 
        int m = /* текущее число кодов */; 
        p[iStar]++; 
// 6. Увеличиваем на 1 счетчик p[i*] 
        p[iStar]++; 
// 7. Вычисляем вектор A_э^t        … 

Рис. 1. Фрагмент кода алгоритма самообучения 

Fig. 1. Fragment of the self-learning algorithm programming code 
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Рис. 2. Зависимость качества обучения от слоёв и объёма выборки 

Fig. 2. Dependence of training quality on layers and sample size 

Выводы 

Сходимость проверена путём моде-
лирования алгоритма [19, 20] на типовом 
ПЭВМ с процессором с максимально 
низкими на текущий момент характери-
стиками (Intel Core2 Duo E8400) при 
имитации обучения на звукотипах рече-
вых сигналов, представленных в поляр-
ных координатах и в растровом форма-
те. При относительно высоких искаже-
ниях и вариациях входного образа про-
цесс обучения завершался за 15 шагов 

на 50 входных векторах с накоплением 
в памяти m=6, принадлежащих одному 
классу образов (рис. 2). 

Требуемая ёмкость памяти для хра-
нения матрицы ||V|| может быть умень-
шена в несколько раз без снижения до-
стоверности классификации путём по-
вторного самообучения с использовани-
ем содержимого памяти m накопленных 
и откорректированных кодов первого 
приближения эталонных векторов в ка-
честве обучающей выборки. 
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