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Резюме 

Цель исследований заключается в создании модели компилятора функционального языка Common Lisp, 
реализации этой модели и тестировании модели компилятора с помощью целевой виртуальной машины, 
чтобы увеличить скорость выполнения программ.  
Методы. С помощью денотационной семантики была построена формальная модель компилятора функцио-
нального языка Common Lisp. Компиляция происходит в несколько этапов. На первом этапе исходный язык 
преобразуется в промежуточный lambda-язык, в котором все макросы раскрываются, встроенные формы 
преобразуются в аналогичные выражения, а имена переменных заменяются на локальные, глобальные и глубо-
кие ссылки. На втором этапе выражение на промежуточном языке преобразуется из древовидной структуры в 
линейный список из примитивных инструкций целевой виртуальной машины.  
Результаты. Полученные в результате компиляции примитивные инструкции кодируются с помощью спе-
циального ассемблера в числовой код для выполнения на целевой виртуальной машине. Также в результате 
компиляции получаются список констант и размер памяти необходимый для работы скомпилированной про-
граммы. Целевая виртуальная машина состоит из отделов памяти для кодированной программы, констант, 
глобальных переменных, стека, списка кадров активации, регистров (аккумулятор, указатель стека, указа-
тель команд, текущий кадр активации). Кадры активации представляют собой объекты-массивы, которые 
хранят указатель на предыдущий кадр, номер уровня глубины вызовов и локальные аргументы. Сборка мусора 
происходит с помощью метода пометки и очистки.  
Заключение. В результате работы была построена и реализована модель компилятора функционального 
языка Common Lisp. По сравнению с интерпретатором скорость работы программы возросла в среднем в 20 
раз. Дальнейшее увеличение скорости можно достичь с помощью различных оптимизаций компилятора на 
разных стадиях. Из простых оптимизаций можно отметить: оптимизацию арифметических выражений, 
устранение лишних команд, упрощение выражений.  
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Abstract 

Purpose of research is to create a compiler model for the functional language Common Lisp, implement this model, 
and test the compiler model using a target virtual machine to increase the execution speed of programs.  
Methods. A formal compiler model of the functional language Common Lisp was built using denotational semantics. 
Compilation takes place in several stages. At the first stage, the source language is transformed into an intermediate 
lambda language in which all macros are expanded, embedded forms are transformed into similar expressions, and 
variable names are replaced with local, global, and deep references. At the second stage, the expression in the 
intermediate language is transformed from a tree structure into a linear list of primitive instructions of the target virtual 
machine.  
Results. The resulting primitive instructions are encoded using a special assembler into numeric code for execution 
on the target virtual machine. The compilation also results in a list of constants and the amount of memory required 
for the compiled program to run. The target virtual machine consists of memory sections for the encoded program, 
constants, global variables, stack, list of activation frames, registers (accumulator, stack pointer, instruction pointer, 
current activation frame). Activation frames are array objects that store a pointer to the previous frame, the call depth 
level number, and local arguments. Garbage collection takes place using the tagging and cleaning method.  
Conclusion. As a result, a Common Lisp functional language compiler model was built and implemented. Compared 
to the interpreter, the speed of the program has increased by an average of 20 times. Further speed increases can 
be achieved by using various compiler optimizations at different stages. Of the simple optimizations, it can be noted: 
optimization of arithmetic expressions, elimination of unnecessary commands, simplification of expressions.  
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*** 

Введение  

Язык Лисп – один из старейших язы-
ков программирования, которые исполь-
зуются сейчас. Разработанный в 50-х го-

дах Джоном Маккарти, он активно раз-
вивался до настоящего времени. Суще-
ствует много диалектов Лиспа, таких как 
Common Lisp, Scheme [1], Racket [2], Clo-
sure и другие [3].  
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Первый компилятор Лиспа был на-
писан в 1962 году в MIT Тимом Хартом 
и Майком Леви  [4]. Он был написан на 
самом Лиспе и мог компилировать себя с 
помощью интерпретатора [5]. Машинный 
код, генерируемый этим компилятором, 
работал в 40 раз быстрее, чем исходная 
программа в интерпретаторе. Функции 
могли быть как интерпретируемыми, так 
и компилируемыми, и свободно работать 
вместе. Такая модель называется инкре-
ментальной компиляцией. Свободные 
(глобальные) переменные могли переда-
ваться между скомпилированными функ-
циями и интерпретатором. Также можно 
было скомпилировать специальные фор-
мы. Для компиляции использовались 
свойства EXPR или FEXPR у переменной 
(символа) функции. Свободные (глобаль-
ные) переменные нужно было объявлять 
перед компиляцией. Порядок компиляции 
функций не имел значения, таким обра-
зом можно было компилировать не все, 
а только необходимые функции, кото-
рые работали очень медленно. В первой 
фазе компиляции S-выражения функций 
переписывались, чтобы более эффективно 
использовать встроенные и пользователь-
ские особые формы (FSUBR и FEXPR), 
рекурсивные функции переписывались 
через итерацию с помощью формы PROG. 
Во второй фазе на основе S-выражений 
генерировался ассемблерный код: опреде-
лялся порядок вычислений, места рас-
положения аргументов и переменных, 
переходы для условных выражений.  

Язык Common Lisp стал ANSI стан-
дартом в 1994. Он объединил в себе до-
стижения многих диалектов Лиспа, та-
ких как Mac Lisp, Zeta Lisp, Spice Lisp, 
S-1 Lisp и других. Это мультипарадиг-
менный язык общего назначения, вклю-
чает в себя процедурное [6], функцио-
нальное [7] и объектно-ориентирован-
ное программирование [8]. Как и мно-
гие другие Lisp системы он является 
динамическим языком, который поощря-
ет эволюционную и инкрементальную 
разработку ПО с итеративной компиля-
цией в эффективные программы, причем 
инкрементальная разработка часто про-
исходит интерактивно, не прерывая ра-
боту программы.  

В современных Common Lisp си-
стемах компилятор генерирует машин-
ный код [9] или байт-код [10], который 
может быть сохранен [11]. Отдельные 
функции могут быть скомпилированы в 
памяти [12]. Модуль программы из файла 
может быть скомпилирован в байт-код, 
программу на языке C, в машинный код 
или в любую комбинацию из вышепере-
численного. Стандарт Common Lisp 
спроектирован для инкрементальной ком-
пиляции [13], а также включает объявле-
ния для оптимизаций компиляции1 такие 

 
1 Свидетельство о государственной реги-

страции программы для ЭВМ № 2024668438 Рос-
сийская Федерация. Оптимизирующий компиля-
тор программ на языках высокого уровня С, С++, 
Фортран: № 2024667303: заявл. 26.07.2024: опубл. 
07.08.2024; заявитель Акционерное общество 
«МЦСТ».  EDN SNOHFN.  

 



Информатика, вычислительная техника и управление / Computer science, computer engineering and control 

Известия Юго-Западного государственного университета / Proceedings of the Southwest State University. 2025; 29(3): 99-112 
 

102
как спецификация типов и подстановка 
функций [14].  

Наиболее известные современные 
реализации Common Lisp: Allegro Com-
mon Lisp, LispWorks, CLISP, CMUCL, 
Steel Bank Common Lisp и другие  [15].  

В этой работе была разработана и 
реализована модель компилятора для 
подмножества языка Common Lisp [16], 
чтобы ускорить выполнение программ 
интерпретатором [17].  

Материалы и методы  

Компиляция исходной программы 
будет проходить в несколько этапов. Для 
простоты здесь не рассматривается этап 
лексического и синтаксического анализа, 
а также раскрытие макросов. Будем счи-
тать, что на вход компилятора подается 
S-выражение как объект.  

На первом этапе компиляции исход-
ная программа анализируется и преобра-
зуется в промежуточную форму: расши-
ренный lambda-язык, где все макросы 
раскрываются, а встроенные формы име-
ют свои аналоги. Главное преобразова-
ние касается переменных. Компилятор 
преобразует имена переменных в такой 
вид, чтобы можно было сразу обратиться 
к нужному месту в памяти, без поиска по 
имени.  

Воспользуемся денотационной се-
мантикой [5], чтобы построить модель 
компилятора. Основу вычисления первой 
фазы компиляции составляет функция ℰ, 
которая будет иметь следующий тип:  

ℰ:ε×ρ×γ×ϕ×π → ε×ρ×γ×ϕ×π,                (1) 
где ε – S-выражение языка; ρ – вычис-
ляемое на момент компиляции окруже-
ние (в начале пустое – []); γ – список 
глобальных переменных; ϕ – список 
глобальных функций; π – список при-
митивов.  

Правила преобразования програм-
мы в первой фазе компиляции представ-
лены формулами:  
ℰ[[c]]ργϕπ = [CONST c]ργϕπ                (2) 
ℰ[[quote ε]]ργϕπ = [CONST ε]ργϕπ      (3) 
ℰ[[ν]]ργϕπ = [LOCAL_REF i]ργϕπ, 
               если fv(ν,ρ,γ) = (local,i)  
[GLOBAL_REFi ]ργϕπ,  
                если fv(ν,ρ,γ) = (global,i)  
[DEEP_REF i j]ργϕπ,  
                 если fv(ν,ρ,γ) = (deep,i,j)      (4) 
ℰ[[progn ε+]]ργϕπ = ℰ+[ε+]ργϕπ  
ℰ+[[ε]]ργϕπ = ℰ[ε]ργϕπ  
ℰ+[[ε ε+]]ργϕπ=[SEQ ℰ[ε] ℰ+[ε+]]ργϕπ  (5) 
ℰ[[if εc εtεf]]ργϕπ =  
=[ALTER ℰ[εc] ℰ[εt] ℰ[εf]]ργϕπ            (6) 
ℰ[[setq ν ε]]ργϕπ = sq(νεργϕπ)  
sq(νεργϕπ) = [LOCAL_SET i ℰ[ε]],  
                 если fv(ν,ρ,γ) = (local,i)  
[GLOBAL_SET i ℰ[ε]],  
              если fv(ν,ρ,γ) = (global,i)  
[DEEP_SET i j ℰ[ε]],   
              если fv(ν,ρ,γ) = (deep,i,j)         (7) 
ℰ[[defun ν σ ε]]ργϕπ =[LABELν  
[SEQ ℰ[ε](σ.ρ)γϕπ RETURN]]ργ(ν.ϕ)π (8) 
ℰ[[λ σ ε]]ργϕπ = [FIX_CLOSURE 
gen()[SEQ ℰ[ε](σ.ρ)γϕπ]]ργϕπ               (9) 
ℰ[[tagbody ε+]]ργϕπ = ℰ∗[ε+]ργϕπ  
ℰ∗[[ν]]ργϕπ = [LABEL ν]ργϕπ  
ℰ∗[[ε]]ργϕπ = ℰ[ε]ργϕπ  
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ℰ∗[[ε ε+]]ργϕπ =[SEQ ℰ[ε] ℰ∗[ε+]]ργϕπ (10) 
ℰ[[go ν]]ργϕπ = [GOTO ν]ργϕπ           (11) 
ℰ[[(λ σ ε1)ε+]]ργϕπ =  
=[FIX_LET #ν ν ℰ[ε 1](σ.ρ)γϕπ]ργϕπ  
ν = ℰ†[ε+]  
ℰ†[[ε]]ργϕπ = ℰ[ε]ργϕπ  
ℰ†[[εε+]]ργϕπ = [ℰ[ε]ℰ†[ε+]]ργϕπ        (12) 
ℰ[[σε+]]ργϕπ = [FIX_CALL σ #ν ν]ργϕπ  
ν = ℰ†[ε+]                                              (13) 
ℰ[[prim ε+]]ργϕπ = [FIX_PRIM prim ν]ργϕπ  
ν = ℰ†[ε+], ∀prim ∈ π                           (14) 

Преобразование констант – триви-
ально (формула 2).  

Цитирование аналогично преобра-
зованию констант (формула 3).  

В формуле (4) показано преобразо-
вание переменной. Для этого определя-
ется тип переменной: локальная, гло-
бальная или свободная. Функция поиска 
переменной имеет вид:  
fv(ν,ρ,γ) = (local ρ0 ↑ ν), если ν ∈ ρ0  
fv(ν,ρ,γ) = (global γ ↑ ν), если ν ∈ γ  
fv(ν,ρ,γ)=(deep(ρn ↑ ν)n), если ν ∈ ρn  (15) 

Локальная переменная ν присутству-
ет в первом кадре локального ок-ружения 
ρ, глобальные переменные на-ходятся в 
глобальном окружении γ, свободные пе-
ременные находятся в любом кадре ρ, 
кроме первого. Выражение ρn ↑ ν обозна-
чает позицию переменной ν в кадре ρn.  

Для денотации компиляции после-
довательности вычислений использует-
ся вспомогательная функция ℰ+. Выра-
жение ε+ означает последовательность 
из одного или более выражений ε.  

При компиляции формы if  6 ком-
пилируются условие εc, выражение по 
истине εt, выражение по лжи εf.  

При компиляции присваивания (фор-
мула  7) используется та же функция по-
иска переменной (формула 15), что и при 
обращении к переменной.  

Компиляция пользовательской функ-
ции (формула  8) включает в себя ком-
пиляцию тела функции ε и расширение 
окружения функций ϕ. Выражение (ν.ϕ) 
означает добавление в начало окруже-
ния ϕ имени функции ν.  

В формуле (9) показана компиля-
ция замыкания λ-функции, при этом не-
обходимо генерировать уникальный сим-
вол (имя замыкания) с помощью функ-
ции gen().  

При компиляции формы tagbody 
(формула 10) используется вспомогатель-
ная функция ℰ∗. В этой функции сим-
волы компилируются как метки, а ос-
тальные формы как при компиляции 
последовательности (формула 5). Фор-
ма go компилируется как переход на 
метку (формула 11).  

Компиляция применения функции 
(формулы 12 и 13) заключается в ком-
пиляции выражений для аргументов ε+ 
и выбора необходимой команды для вы-
зова функции. Если функция представля-
ет собой λ-абстракцию, то используется 
упрощенный вызов FIX_LET (формула 12), 
который подразумевает создание кадра 
активации (расширение окружения пе-
ременных) без вызова функции. При 
этом тело функции ε1 компилируется в 
расширенном окружении. Если идет 
вызов пользовательской функции из 
окружения ϕ, то используется обыч-
ный вызов FIX_CALL (формула 13).  
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Компиляция применения встроенно-

го примитива (формула 14) аналогична 
компиляции применения функции за 
исключением того, что нет необходи-
мости передавать число аргументов, для 
каждой примитивной функции это чис-
ло фиксировано.  

Во время второй фазы компиляции 
полученное выражение линеаризирует-
ся (из древовидного выражения получа-
ется линейный список) и преобразуется 
в примитивные инструкции (фаза опти-
мизации не рассматривается). Функция 
G этого преобразования будет иметь 
следующий тип:  

G : ε × (ν → ν) → ν,                      (16) 
где ε – выражение после первой фазы;  
ν → ν – функция продолжения, которое 
используется, чтобы задать порядок 
преобразований (начальное продолже-
ние возвращает свой аргумент). В резуль-
тате получается пустое значение ν, так 
как сама генерация будет представлена 
функцией ω, которая должна добавлять 
свой аргумент в линейный список.  

Правила преобразования второй фа-
зы представлены формулами:  
G[[CONST ε]]κ = κω(CONST ε)         (17) 
G[[GLOBAL_REF i]]κ = 
=κω(GLOBAL_REF i)                         (18) 
G[[LOCAL_REF i]]κ = 
=κω(LOCAL_REFi)                             (19) 
G[[DEEP_REF i j]]κ = κω(DEEP_REF i j)  (20) 
G[[RETURN]]κ = κω(RETURN)        (21) 
G[[GLOBAL_SET i ε]]κ = 
=G[ε]λ().κω(GLOBAL_SET i)            (22) 
G[[LOCAL_SET i ε]]κ = 
=G[ε]λ().κω(LOCAL_SET i)               (23) 

G[[DEEP_SET i j ε]]κ = 
=G[ε]λ().κω(DEEP_SET i j)                (24) 
G[[LABEL ν ε]]κ = κω(LABEL ν),  
           если ε = {}  
G↕[ω(JMP l)]λ().  
G↕[ω(LABELν)]λ().  
G[ε]λ().κω(LABELl),  
в противном случае G↕[ε]κ = κε  
l = gen()                                                (25) 
G[[SEQ ε+]]κ = G+[ε+]κ  
G+[[ε]]κ = G[ε]κ  
G+[[ε ε+]]κ = G[ε]λ().G+[ε+]]κ           (26) 
G[[ALTER εc εt εf]]κ = 
=G[εc]λ().G↕[ω(JNT lf)]λ().G[εt]λ().  
G↕[ω(JMP la)]λ().G↕[ω(LABEL lf)]λ().  
G[εf]λ().κω(LABEL la)  
lf = gen()  
la = gen()                                               (27) 
G[[FIX_CLOSURE ν ε]]κ = 
=G↕[ω(FIX_CLOSURE ν)]λ(). G[ε]κ  (28) 
G[[FIX_CALL ν ρ ε+]]κ =A[ε+]λ().  
ω([SAVE_ENV, SET_ENV ρ,  
ALLOC #ε+, REG_CALL ν,  
RESTORE_ENV]), 
где A[[ε]]κ = G[ε]λ().κω(PUSH)  
A[[ε ε+]]κ = A[ε]λ().A[ε+]]κ               (29) 
G[[FIX_PRIM ν ε+]]κ = 
A[ε+]λ().κω(PRIM ν)                          (30) 
G[[GOTO ν]]κ = κω(JMP ν)               (31) 

Преобразование констант, обраще-
ний к переменным, возврат из функции 
остаются в неизменном виде (формулы 
17 – 21).  

В случае присваивания переменной 
(формулы 22 – 24) сначала генерирует-
ся код для выражения, а затем результат 
записывается в переменную.  
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Команда LABEL (формула 25) ис-
пользуется для генерации кода функции 
и как метка внутри формы TAGBODY. В 
первом случае генерируется дополни-
тельная метка после кода функции и 
команда перехода на эту метку, чтобы 
код функции нельзя было выполнить 
кроме как через вызов или замыкание, 
при последовательном выполнении про-
граммы код функции будет пропущен. 
Вспомогательная функция G↕ использу-
ется для денотации последовательной ге-
нерации команд.  

Последовательность выражений (фор-
мула 26) разворачивается также как при 
компиляции формы PROGN, используя 
аналогичную вспомогательную функ-
цию G+.  

Линеаризация условий (формула 27) 
происходит с помощью сгенерирован-
ных двух меток lf и la. Сначала генери-
руется код условия. Затем идет команда 
перехода на метку lf, если условие лож-
но. После этого идет генерация кода, 
выполняющегося по истинности усло-
вия. Затем вместе с меткой lf генериру-
ется код, выполняющегося по лжи. В 
конце добавляется метка la.  

При генерации замыкания функции 
(формула 28) команда замыкания просто 
вставляется перед кодом функции. Этот 
код будет включать метку и команду пе-
рехода на точку после функции.  

При генерации вызова функции (фор-
мула 29) создается последовательность 
разных команд. В начале генерируется 
код для вычисления аргументов. Для 
этого используется вспомогательная 

функция A, которая похожа на функцию 
G+ за исключением того, что после 
каждого выражения генерируется ко-
манда PUSH, которая будет сохранять 
результат вычисления аргумента в сте-
ке. После этого генерируются команды 
сохранения текущего кадра активации, 
установка необходимого кадра (окру-
жение, где была объявлена функция), 
создания нового кадра активации, соб-
ственно вызова функции и восстанов-
ление сохраненного кадра.  

Генерация вызова примитива (фор-
мула 30) похожа на вызов функции, 
также генерируется код вычисления ар-
гументов, а затем идет команда вызова 
примитива по номеру.  

Команда GOTO преобразовывается 
в команду JMP (формула 31).  

Результаты и их обсуждение  

Полученные в результате компиля-
ции примитивные инструкции кодиру-
ются с помощью специального ассем-
блера в числовой код. Этот код предна-
значен для выполнения с помощью це-
левой виртуальной машины. Констан-
ты, полученные в результате компиля-
ции, сохраняются в память констант. 
Глобальные переменные будут нахо-
диться в своей памяти. Число глобаль-
ных переменных (размер памяти) также 
генерируется компилятором. Метки, ко-
торые были получены в результате 
компиляции, преобразуются в адреса. 

В табл. 1 представлены коды и зна-
чения инструкций целевой машины. 
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Таблица 1. Инструкции целевой машины 

Table 1. Target machine instructions 

0 CONST num поместить константу с номером num в регистр ACC. 

1 JMP ofs безусловный переход на смещение ofs относительно PC. 

2 JNT ofs если ACC == NIL, то относительный переход на смещение ofs. 

3 ALLOC n создать новый кадр активации с числом аргументов n. 

4 GLOBAL-REF i устанавливает регистру ACC значение глобальной переменной с   индексом i. 

5 GLOBAL-SET i устанавливает глобальной переменной с индексом i значение   регистра ACC. 

6 LOCAL-REF i загружает в ACC значение i локальной переменной   (текущего кадра активации). 

7 LOCAL-SET i 
присваивает локальной переменной i (текущего кадра активации)  значение реги-
стра ACC. 

8 DEEP-REF i j 
загружает в ACC значение локальной переменной с индексом j  в кадре i (начиная 
от текущего). 

9 DEEP-SET i j присваивает локальной переменной j в кадре i значение регистра ACC. 

10 PUSH добавляет значение регистра ACC в стек 

11 PACK n собирает последние n элементов из стека в список и добавляет  его в стек. 

12 REG-CALL ofs 
добавляет адрес следующей инструкции в стек и производит переход по смеще-
нию ofs. 

13 RETURN производит переход на адрес из верхушки стека, при этом удаляет этот адрес из стека 

14 FIX-CLOSURE ofs 
в регистр ACC добавляется объект замыкание с текущим кадром активации и 
смещением на код функции относительно текущего адреса ofs. 

15 SAVE-FRAME сохраняет кадр активации в стеке 

16 SET-FRAME num устанавливает кадр активации с номером num  относительно начала глубины вызовов. 

17 RESTORE-FRAME восстанавливает кадр активации из стека. 

18 PRIM n 
вызывает примитив с номером n из таблицы примитивов с фиксированным чис-
лом аргументов. 

19 NPRIM n 
вызывает примитив с номером n из таблицы примитивов с переменным числом 
аргументов. 

20 HALT останов машины 

21 PRIM-CLOSURE n 
в регистр ACC добавляется объект замыкание с текущим  кадром активации и ад-
ресом кода примитива с фиксированным числом аргументов и номером n. 

22 NPRIM-CLOSURE n 
в регистр ACC добавляется объект замыкание с текущим кадром активации и ад-
ресом кода примитива с переменным числом аргументов и номером n. 

23 CATCH ofs 
добавляет запись в стек catch, сохраняется имя метки в acc, абсолютный адрес по 
смещению ofs, текущий кадр активации, укзатель стека. 

24 THROW 
извлекает из стека имя метки блока catch, ищет в стеке catch запись с этим име-
нем,  выполяет переход на сохраненный адрес конца блока catch 
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Архитектура целевой виртуальной машины представлена на рис. 1. 

 
Рис. 1. Архитектура целевой виртуальной машины 

Fig. 1. Target virtual machine architechture 

Машина включает в себя память 
программы (где хранится байт код про-
граммы), память констант, память гло-
бальных переменных, стек, список кад-
ров активации и регистры. 

В памяти программы хранятся ин-
струкции программы Каждая инструк-
ция включает код операции и возмож-
ные параметров. 

Кадры активации представляют со-
бой объекты-массивы (рис. 2). 

Первый элемент массива – это ссыл-
ка на предыдущий кадр. Следующий 
элемент служит для ускорения поиска 
кадра по глубине вызова, здесь хранится 
номер кадра (глубина вызовов). 

 
Рис. 2. Структура кадров активации 

Fig. 2. Activation frames structure 

Остальные элементы массива – это 
локальные аргументы. Кадры могут 
иметь не только линейную, но и древо-
видную структуру, поэтому необходима 
ссылка на предыдущий кадр. Такие 
объекты удобно записывать в стек, вос-
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станавливать из стека. Кадры активации 
создаются динамически как и другие 
объекты программы. 

Регистры машины: 
PC – хранит адрес текущей выполня-

емой инструкции из памяти программы. 
ACC – хранит результат последней 

операции, может быть любым объектом. 
FRAME – текущий кадр активации.  
SP – указатель стека.     
Сборка мусора включает в себя фа-

зу пометки и фазу очистки. В фазе по-
метки помечаются объекты, до которых 
можно дойти с помощью обхода, начи-
ная с корневых объектов в регистрах. Это 

регистр аккумулятора ACC, указатель на 
текущий кадр активации FRAME, все 
объекты, находящиеся в стеке, начиная 
с текущей позиции SP, а также все объ-
екты в памяти констант и глобальных 
переменных. Сборка мусора выполня-
ется, когда число созданных массивов 
(кадров-активации) превысит заданный 
порог (половина максимального числа 
массивов). 

В табл. 2 показано сравнение ско-
рости работы полученного байт-кода по 
сравнению с интерпретатором на различ-
ных тестах. 

Таблица 2. Время (в сек.) работы тестов на интерпретаторе и байт-кода в виртуальной машине 

Table 2. Time (in sec.) to run of tests on interpreter and byte-code with virtual machine 

Тест / Test 
Интерпретатор 

/ Interpreter 
Скомпилированный байт-
код / Compiled Bytecode 

Отношение / 
Relation 

Cписки  0.034 0.011 3.1 

Массивы  0.026 0.011 2.3 

Хеш-таблицы  0.024 0.008 3 

Строки  0.032 0.010 3.2 

Объекты и классы  0.026 0.009 2.9 

Векторы на плоскости  0.04 0.009 4.4 

Шифрование AES  2.503 0.111 22.5 

Регулярные выражения  1.923 0.116 16.6 

Собственная компиляция  44.231 1.987 22.2 

 
 
Из табл. 2 видно, что отношение 

скорости возрастает при увеличении объ-
ема программы. 

Выводы 

В результате работы была построе-
на и реализована модель компилятора 
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для функционального языка Common 
Lisp. Компилятор формирует байт-код, 
который выполняется с помощью вир-
туальной машины. Выигрыш в скорости 
по сравнению с интерпретатором на ре-
алистичных тестах (шифрование, регу-
лярные выражения, компиляция самого 
себя) составляет 16-25 раз. Дальнейшее 
увеличение скорости можно достичь с 
помощью различных оптимизаций ком-

пилятора на разных стадиях [18]. Из 
очевидных оптимизаций можно отме-
тить: оптимизацию арифметических вы-
ражений (преобразование операций с 
переменным числом параметров в опе-
рации с двумя параметрами), устране-
ние лишних команд (множественная за-
грузка в аккумулятор, установка / чте-
ние одной переменной), упрощение вы-
ражений [19]. 
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