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Резюме 

Цель исследования. В статье приводится математическое описание процесса теплопередачи при комби-
нированной утилизации низкопотенциальной теплоты сбросных газов и вентиляционных выбросов в каналах 
многослойного пластинчатого рекуператора. 
Методы. С целью описания работы комбинированной системы утилизации сбросных газов и вентиляционных 
выбросов разработана математическая модель, учитывающая распределение воздушных потоков в каналах 
пластинчатого рекуператора при утилизации низкопотенциальной теплоты, переносимой воздушной массой 
и теплопередачи через плоскую многослойную стенку со встроенными полупроводниковыми элементами 
Пельтье, на основе которой создана методика разработки и проектирования высокоэффективных и эконо-
мичных систем утилизации низкопотенциальной теплоты с попутной генерацией термоэлектричества. 
Результаты. Разработана математическая модель, описывающая работу комбинированной системы утили-
зации сбросных газов и вентиляционных выбросов, включающую потокораспределение в каналах пластин-чатого 
рекуператора, утилизацию теплоты с использованием термоэлектрических элементов Пельтье и их влияния на 
процесс теплопередачи через плоскую многослойную стенку, которая в дальнейшем позволит создать методику 
проектирования высокоэффективных и экономичных систем утилизации теплоты, опти-мизировать процессы 
тепло- и массообмена, проводить численные эксперименты с оценкой экономи-ческой эффективности. 
Заключение. С целью повышения эффективности систем утилизации низкопотенциальной теплоты сброс-
ных газов и вентиляционных выбросов создана математическая модель, включающая в себя распреде-ление 
воздушных потоков в межпластинчатом пространстве рекуператора, процесс теплопередачи через плоскую 
многослойную стенку с установленными плоскими полупроводниковыми элементами Пельтье.  
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Abstract 

Purpose of research. The article provides a mathematical description of the heat transfer process during the 
combined utilization of low-potential waste heat and ventilation emissions in the channels of a multilayer plate heat 
exchanger. 
Methods. In order to describe the operation of a combined exhaust gas and ventilation emissions disposal system, a 
mathematical model has been developed that takes into account the distribution of air flows in the channels of a plate 
heat recovery unit during the utilization of low-potential heat transferred by the air mass and heat transfer through a 
flat multilayer wall with integrated semiconductor Peltier elements. Based on this method, a methodology has been 
developed for the development and design of highly efficient and economical low-potential heat recovery systems 
with associated generation of thermoelectricity. 
Results. A mathematical model has been developed describing the operation of a combined waste gas and 
ventilation emissions disposal system, including flow distribution in the channels of a plate heat recovery unit, heat 
recovery using Peltier thermoelectric elements and their effects on heat transfer through a flat multilayer wall, which 
will further create a design methodology for highly efficient and economical heat recovery systems, optimize heat and 
mass transfer processes., to conduct numerical experiments with an assessment of economic efficiency. 
Conclusion. In order to increase the efficiency of waste gas low-potential heat recovery systems and ventilation emissions, 
a mathematical model has been created that includes the distribution of air flows in the interplate space of the heat 
exchanger, the process of heat transfer through a flat multilayer wall with mounted flat semiconductor Peltier elements.  
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*** 

Введение 

В условиях растущего интереса к 
энергосбережению и экологической без-
опасности, разработка эффективных си-

стем утилизации низкопотенциальной 
теплоты становится актуальной задачей. 
Теплота, содержащаяся в сбросных га-
зах и вентиляционных выбросах с темпе- 
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ратурой до 200°С, ранее считавшаяся 
невостребованной, может быть использо-
вана для повышения энергоэффективно-
сти различных технологических процес-
сов (вентиляционные системы, теплоге-
нерирующие установки, промышленные 
печи и т.д.) [1-10]. 

Для повышения энергоэффективно-
сти и улучшения утилизации сбросных 
газов и вентиляционных выбросов ис-
пользуется технология рекуперации, поз-
воляющая дополнительно нагревать или 
охлаждать приточный воздух, миними-
зируя потери тепла и экономя от 25 до 
35% электроэнергии. Эффективность ре-
куперационной системы зависит от кон-
струкции поверхности теплообмена, ко-
эффициента теплопередачи, климатиче-
ских условий эксплуатации, скорости воз-
душных потоков и разницы температур, а 
при достижении оптимальных параметров 
может достигать до 80% [11-20]. 

Для достижения максимальной эф-
фективности предлагается использовать 
комбинированные системы утилизации, 
включающие в себя различного рода теп-

лообменное и рекуперативное оборудо-
вание с модифицированными (много-
слойными) теплообменными стенками со 
встроенными в их конструкцию полупро-
водниковыми элементами Пельтье, а так-
же системами очистки от вредных ком-
понентов, позволяют не только эффек-
тивно использовать тепловую энергию, но 
и попутно генерировать термоэлектриче-
ство, обеспечивая автономность работы, а 
также очищать сбросные газы и вентиля-
ционные выбросы, что делает такие си-
стемы особенно перспективными [21, 22]. 

Материалы и методы 

С целью выявления наиболее эффек-
тивной схемы интенсификации теплопере-
дачи использовались три типа многослой-
ных стенок: без турбулизаторов (рис. 1,а), с 
коридорным (рис. 1,б) и шахматным рас-
положением турбулизаторов (рис. 1,в). 

Более подробно конструкция схем с 
коридорной и шахматной конфигурацией, 
а также структура многослойной стенки с 
плоскими термоэлектрическими элемен-
тами Пельтье приведены на рис. 2 – 4. 

   

               а)             б)             в) 

Рис. 1. Многослойная стенка рекуператора: а – без турбулизаторов; б – с коридорным 
расположением турбулизаторов; в – с шахматным расположением турбулизаторов 

Fig. 1. Multilayer recuperator wall: a – without turbulators; б – with corridor arrangement of turbulators; 
в – with staggered arrangement of turbulators 
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Рис. 2. Схема многослойной стенки с коридорным расположением турбулизаторов:  

1 – алюминиевый Т-образный радиатор; 2 – термическая прокладка; 3 – элемент 
Пельтье; 4 – алюминиевая стенка рекуператора; 5 – цилиндрические турбулизаторы 

Fig. 2. Diagram of a multilayer wall with a corridor arrangement of turbulators: 1 – aluminum  
T-shaped radiator; 2 – thermal gasket; 3 – Peltier element; 4 – aluminum recuperator wall;  
5 – cylindrical turbulators 

 

 
Рис. 3. Многослойная стенка с шахматным расположением турбулизаторов: 1 – алюминиевый 

Т-образный радиатор; 2 – термическая прокладка; 3 – элемент Пельтье;  
4 – алюминиевая стенка рекуператора; 5 – цилиндрические турбулизаторы 

Fig. 3. Multilayer wall with staggered turbulators: 1 – aluminum T-shaped radiator; 2 – thermal gasket; 
3 – Peltier element; 4 – aluminum recuperator wall; 5 – cylindrical turbulators 
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Рис. 4. Схема стенки рекуператора с прямоугольными отверстиями для установки элементов 

Пельтье 

Fig. 4. Diagram of the recuperator wall with rectangular holes for installing Peltier elements 

 

Проведем сравнительный анализ трех 
вариантов утилизации низкопотенциаль-
ного тепла сбросных газов и вентиляци-
онных выбросов в системе вентиляции 
зданий и сооружений.  

Результаты и их обсуждение 

Рассмотрим основные приёмы ре-
куперации тепловых потоков, переме-
щающихся во взаимно перпендикуляр-
ных направлениях (рис. 1б, 1в), исполь-
зующие турбулизаторы с шахматным и 
коридорным расположением на ребри-
стых поверхностях, соответственно в 
зонах горячего и холодного воздушных 
потоков. 

В каждом случае имеем двухряд-
ные пучки турбулизаторов, обдуваемых 
горячим и холодным воздушным пото-
ком, соответственно в горячих и холод-
ных камерах. 

В этих условиях значения критерия 
Нуссельта для горячего потока: 

0,8 0,43
г г гNu 0,022Re Pr εi ,        (1) 

где εi  – поправочный коэффициент, 

при 
г

15a
d

 
 

 
, ε 1i  ; при 

г
15a

d
 

 
 

, 

0,12

г
г

ε 1,38 a
d

 
  

 
; 

dг – эквивалентный диаметр горяче-
го канала, м. 
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Проведем сравнительный анализ 
функционирования различных компоно-
вочных схем турбулизаторов: ребристой 
стенки без турбулизаторов, ребристой 
стенки соответственно с коридорным и 
шахматным расположением пучков – 
цилиндрических турбулизаторов. В каж-
дом случае осуществлялась попутная ге-
нерация термоЭДС с помощью плоских 
полупроводниковых элементов Пельтье. 

Анализ данных эксперимента позво-
ляет представить полученную в результа-
те рекуперации мощность Q в виде: 

э тQ Q Q  , э 1βQ Q ,  

т 2βQ Q 1 2β β 1   ,        (2) 

где Qэ, Qт – слагаемые мощности Q, 
расходуемые соответственно на полу-
чение термоЭДС и дополнительного 
подогрева приточного воздуха, Вт; 

β1, β2 – доли мощностей Qэ, Qт, в 
составе Q, причем β1 = 0,8…0,9, β2 =  
= 0,1…0,2.  

Схема расположения пучков турбу-
лизаторов приведена на рис. 5.  

Установившийся режим в работе ре-
куператора будем считать стационарным 
в виду того, что температурный напор 
между стенками со временем практически 
не меняется. В этом случае уравнение 
теплопроводности будет иметь вид 

2
гλ ω 0t   ,                               (3) 

где λг – коэффициент теплопроводности 
горячего воздуха, Вт/(м·К); 

2 – оператор Лапласа, причем 

0
τ
t



; 

ω – средняя скорость воздуха в го-
рячем канале рекуператора. 

  
                          а)                             б) 

Рис. 5. Схемы расположения пучков турбулизаторов: а – двухрядный шахматный пучок;  
б – двухрядный коридорный пучок 

Fig. 5. Arrangement schemes of turbulator beams: a – double–row staggered beam;  
б– double-row corridor beam 
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Предварительно определяются па-

раметры, необходимые для дальнейше-
го анализа функционирования указан-
ного устройства. 

Вычисляются средние температуры 

гt , хt  соответственно в горячем и хо-

лодном каналах: 
г г

г 2
t tt
 

 , х х
х 2

t tt
 

 .        (4) 

Расчет эквивалентных диаметров d1 
и d2 цилиндрических труб находится из 
отношения 

г
г

г

4 fd
u

 , х
х

х

4 fd
u

 ,                    (5) 

где fг, fх, uг, uх – соответственно пло-
щади сечения и периметры горячего и 
холодного каналов. 

Зависимости (4) и (5) позволяют 
вычислять значение критерия Рейноль-
дса в горячем канале: 

г г
г

г
Re w d

v
 .                               (5) 

Учитывая (1) и (5), получаем зна-
чение коэффициента теплоотдачи αг от 
греющей среды к стенке радиатора: 

г
г г

г

λα Nu
d

 .                               (6) 

Учитывая расчетные данные по 
критерию Рейнольдса (1) и (5), анало-
гично режим функционирования хо-
лодного канала также является турбу-
лентным, тогда критерий Нуссельта в 
этом случае может быть найден из вы-
ражения 

0,8 0,43
х х хNu 0,022Re Pr ,        (7) 

где 
0,12

х
х

ε 1,38 a
d

 
  

 

0,120,31,38 0,022
0,07

   
 

. 

Рассмотрим основные характеристи-
ки воздушной массы в холодном кана-
ле. Критерий Грассгофа определяется 
из соотношения 

 
3 г х

х х 2
г х

Gr
273

t tg d
t




 
,        (7) 

где g = 9,8156 м/с2 – ускорение свобод-
ного падения. 

С другой стороны, выражение (9) 
позволяет найти критерий Нуссельта 
Nuх в холодном канале по формуле 

 0,25
х хNu 0,5 Pr Gr .                    (8) 

Соотношения (5) – (10) дают воз-
можность определить значение тепло-
отдачи αХ от стенки радиатора к нагре-
ваемой среде: 

х
х х

х

λα Nu
d

 .                               (9) 

Опираясь на данные из рис. 2, вы-
числяются соответственно площадь по-
перечного сечения и площадь гладкой 
части оребренной поверхности fр тер-
мически тонкого ребра 

 тор
тор

α
λ , 0

λ
 

  
 

: 

рf ab , р р2F al ,                 (10) 

где αтор, λтор – соответственно коэффи-
циенты теплоотдачи и теплопроводно-
сти торца ребра. 

Дифференциальное уравнение теп-
лопереноса (11) моделирует передачу 
тепла вдоль оси абсцисс с началом ко-
ординат в середину горячего канала, 
учитывая, что коэффициент теплопро-
водности λр ребра гораздо больше ко-
эффициента теплопроводности горячего 
воздуха λх. Это позволяет полагать, что  
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тепловыми потерями по остальным на-
правлениям можно пренебречь. В этом 
случае данное уравнение примет вид: 

   
2

х
х2 0

d t t t
m t t

dx


   ,      (11) 

где хt  – средняя температура в холод-

ном канале, t = t(x) – текущая темпера-
тура ребра в сечении х. 

Параметр m, 1/м определяется по 
формуле 

р
р

р р

2α
λ δ

l , р

р р

2α
λ δ

m  ,      (12) 

где δр – периметр ребра м. 
Уравнение (11) представим в виде, 

удобном для интегрирования: 

   2
х х 0d t t m t t    .      (13) 

В этом случае общее решение име-
ет вид: 

   х 1 2ch sht t B mx B mx   ,      

(14) 

где В1, В2 – постоянные интегрирования. 
Ввиду того, что проведено n = 3 се-

рий экспериментов по N = 9 опытов в 
каждом, в дальнейшем для исследова-
ния будем использовать средние темпе-
ратуры горячей и холодной стенок tсг, 
tсх, а также входной и выходной темпе-
ратуры горячего гt , гt  и холодного хt , 

хt  каналов. 

Используя граничные условия, оп-
ределяем постоянные интегрирования 
В1 и В2, если x = 0, то х сх хt t  , при x 

= lр, то 
р

0x lx





 и прийти к соотно-

шению: 

  
 

рх
сх х р

ch

ch

m l xt t
t t ml





,      (15) 

где tсх – температура основания ребра. 
Вследствие этого полный тепловой 

поток Qр с поверхности ребра опреде-
ляется выражением: 

 
 
       

       

р р р
х р p х

р р х p р р
р р0 0 0

р р х р ррp х
р p х р

р рр

ch 2 α
2 α 2 α ch

ch ch

α 2 th th2 α
sh α ,

0ch

l l l
ml mx a

Q a t t dx a dx ml mx d ml mx
ml m ml

al ml mlla
ml mx F

ml mlm ml

  
       


    

  
(16) 

где Fр = 2a·lр. 
Введя обозначение эффективности 

круглого ребра с эквивалентным диа-

метром dх в виде 
 р

р

th ml
А

ml
 , имеем 

р р х р р р хα 2 αQ F A Aal    .  (17) 

С другой стороны, тепло Qс, отда-
ваемое гладкой частью оребренной по-

верхности площадью Fс, определяется 
из соотношения: 

 с с х с с хα δ αQ F a b     ,    

(18) 

где Fс = a (b + δ). 
Анализируя соотношения (17) и 

(18), сделаем вывод, что дальнейший 
рост высоты ребра приводит к спаду 
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эффективности рекуператора. В этом 
случае его эффективность (КПД) можно 
увеличить за счет установки дополни-
тельных турбулизаторов в виде метал-
лических цилиндров, смонтированных 
по коридорной или шахматной схемам 
на ребрах, что позволяет получить уве-
личение рекуперации и дает возмож-
ность получить попутное тепло соот-
ветственно: Qтк – от коридорной схемы, 
Qтш – от шахматной схемы, причем: 

 тк тк сх х тк

тк х т тк

α π
α ;

Q t t d h z
F z

  

 
      (19) 

 тш тш сх х тш

тш х т тш

α π
α ,

Q t t d h z
F z

  

 
   (20) 

где αк, αш, zтк, zтш, Fт = π d h – соответ-
ственно коэффициенты теплоотдачи ко-
ридорных и шахматных турбулизаторов, 
их количество и боковая поверхность. 

Следует отметить, что коэффици-
енты теплоотдачи αк, αш отличаются от 
справочного значения одиночного тур-
булизатора αт. Это связано с характером 
размещения турбулизаторов на ребрах, 
заметно влияющих на процесс рекупе-
рации. Это отличие определяется зави-
симостями к к тα γ α , ш ш тα γ α , где 

γк, γш = const. Из этого следует 

тк к т хк ткγ αQ F z  ,  

тш ш т хш т тшγ αQ F z  ,      (21) 

где αт = αал. 
Общее количество тепла Qхi, отдава-

емого ребром с турбулизаторами в холод-
ном канале, определяется выражением 

х р с хтi iQ Q Q Q   ,                  (22) 

где i = 0, ш, к. Если i = 0, то Qхто = 0 – 
ребра не содержат турбулизаторов; если 

i = ш, то Qхтi = Qхтш – турбулизаторы 
смонтированы по шахматной схеме; ес-
ли i = к, то Qтi = Qтк – турбулизаторы 
смонтированы по коридорной схеме. 
 

Учитывая (20) – (22), получаем: 

х р х р с х с

т х т т

α α

α ,
i i i

i i i

Q F А F

F z

    

 
    (23) 

где индекс i = 0, ш, к – аналогичен тем 
же схемам турбулизаторов, что и в со-
отношениях (19) – (22); 

zтi – число турбулизаторов. 
С другой стороны, Qхi можно пред-

ставить в виде: 

х пр х ртαi iQ F  ,                  (24) 

где αпр – приведенный коэффициент 
теплоотдачи, Вт/(м2·К); 

Fрт – приведенная площадь ореб-
ренной поверхности, содержащей тур-
булизаторы. 

Получим приведенный коэффици-
ент теплоотдачи: 

р с т
пр р с т т

рт рт рт
α α α α i i

F F FА z
F F F

   .(25) 

Выводы 

Создана математическая модель теп-
ловых процессов с разливным располо-
жением цилиндрических турбулизато-
ров (шахматным, коридорным), в пла-
стинчатом рекуператоре в квазистацио-
нарном тепловом режиме. 

Предложена методика определения 
коэффициентов теплоотдачи и теплопере-
дачи комплексного многослойного пла-
стинчатого рекуператора с повышенной 
турбулизацией воздушных потоков. 
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Разработана математическая модель, 
описывающая работу комбинированной 
системы утилизации сбросных газов и 
вентиляционных выбросов, включаю-
щую потокораспределение в каналах  
 
пластинчатого рекуператора, утилизацию 
теплоты с использованием термоэлек-
трических элементов Пельтье и их влия-

ния на процесс теплопередачи через 
плоскую многослойную стенку, которая 
в дальнейшем позволит создать методику 
проектирования высокоэффективных и 
экономичных систем утилизации тепло-
ты, оптимизировать процессы тепло- и 
массообмена, проводить численные экс-
перименты с оценкой экономической 
эффективности. 
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