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Резюме 

Цель исследования. Обеспечение заданной точности последовательных и параллельных движений в голено-
стопе, колене, бедре активного реабилитационного экзоскелета нижних конечностей с одновременной час-
тичной разгрузкой голеностопного и коленного суставов от осевых нагрузок за счет установки одного из 
приводов вращательного движения на бедерном суставе. Задачи: разработка и реализация стратегии актив-
но - пассивного движения (АПД), при которой фазы пассивного движения нижних конечностей (при этом, экзо-
скелет обеспечивает перемещение конечностей), сочетаются с фазами активного движения, когда сам 
пациент осуществляет желаемое движение, а экзоскелет ассистирует ему. Сравнительный анализ резуль-
татов экспериментов и оценка адекватности и применимости математической модели. 
Методы. Исследование выполнено в соответствии с общепринятыми методами проведения и планирования 
экспериментальных исследований. При моделировании движения нижних конечностей учитываются пара-
метры, характеризующие силовое взаимодействие экзоскелета и человека, что позволяет определять 
реакции в тазобедренном шарнире и синтезировать параметры системы управления с учетом внешних 
возмущающих воздействий. 
Результаты. Разработана математическая модель движения нижних конечностей реабилитационного 
тренажерно - обучающего комплекса, отличающаяся от известных тем, что наряду с учетом кинематических 
и динамических особенностей движения звеньев реабилитационного устройства, учитываются параметры, 
характеризующие силовое взаимодействие экзоскелета и человека, что позволяет определять реакции в 
тазобедренном шарнире и синтезировать параметры системы управления с учетом внешних возмущающих 
воздействий. 
Заключение. Предлагаемая в работе математическая модель и структура реабилитационного аппарата в 
виде плоского манипулятора – экзоскелета, оснащенного двумя приводами, один из которых совмещен с 
осью тазобедренного сустава человека, позволяет скомпенсировать влияние активных и реактивных 
сил, действующих на тазобедренный сустав человека при выполнении медицинских манипуляций.  
 

_______________________ 
 Яцун С.Ф., Емельянова О.В., Савельева Е.В., Фурсов Г.А., 2025 
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Abstract 

Purpose of reseach. Ensuring the specified accuracy of sequential and parallel movements in the ankle, knee, hip of 
an active rehabilitation exoskeleton of the lower extremities with simultaneous partial unloading of the ankle and knee 
joints from axial loads by installing one of the rotary motion actuators on the hip joint. Tasks. The development and 
implementation of an active - passive movement strategy (ADF), in which the phases of passive movement of the 
lower extremities (while the exoskeleton provides movement of the limbs) are combined with the phases of active 
movement, when the patient himself performs the desired movement, and the exoskeleton assists him. Comparative 
analysis of experimental results and assessment of the adequacy and applicability of the mathematical model. 
Methods. The study was performed in accordance with generally accepted methods of conducting and planning 
experimental studies. When modeling the movement of the lower extremities, the parameters characterizing the force 
interaction of the exoskeleton and the human are taken into account, which makes it possible to determine reactions 
in the hip joint and synthesize the parameters of the control system taking into account external disturbing influences. 
Results. A mathematical model of the movement of the lower extremities of a rehabilitation training complex has 
been developed, which differs from the known ones in that, along with taking into account the kinematic and dynamic 
features of the movement of the links of the rehabilitation device, parameters characterizing the force interaction of 
the exoskeleton and a person are taken into account, which makes it possible to determine reactions in the hip joint 
and synthesize the parameters of the control system taking into account external disturbing influences. 
Conclusion. The mathematical model and structure of the rehabilitation device proposed in the paper in the form of a 
flat exoskeleton manipulator equipped with two actuators, one of which is aligned with the axis of the human hip joint, 
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makes it possible to compensate for the influence of active and reactive forces acting on the human hip joint during 
medical manipulations. 
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Введение 

Различные травмы опорно-двигатель-
ного аппарата являются одними из рас-
пространенных повреждений, полученных 
вследствие военных, промышленных, 
спортивных, дорожно-транспортных и др. 
происшествий, а так же возрастных 
нарушений функций организма. Они мо-
гут приводить к полной или частичной 
инвалидности, поэтому процесс восста-
новления двигательных функций орга-
низма и возвращение к активной соци-
альной и трудовой деятельности зави-
сит от правильности лечения и свое-
временности проведения реабилитаци-
онных мероприятий. 

Одним из способов восстановления 
и реабилитации таких больных является 
применение специальных тренажеров, 
которые представляют собой инноваци-
онные человеко-машинные комплексы, 
включающие задающие устройства раз-
личного типа (джойстики с обратной свя-

зью, копирующие экзоскелеты, пульты 
управления) и электромеханические си-
стемы управления. Такие комплексы по-
вышают качество проведения медицин-
ских процедур за счет придания мобиль-
ности пациенту с повреждением опорно-
двигательного аппарата, при том, что ис-
полнительный орган робота, например – 
экзоскелет, обеспечивает заданное дви-
жение нижних конечностей, с одновре-
менным объективным контролем за со-
стоянием пациента и оценкой окружа-
ющей пациента среды [1]. Существен-
ной проблемой является то, что в суще-
ствующих реабилитационных тренаже-
рах отсутствует система адаптации те-
стовых воздействий с учетом индиви-
дуальных параметров пациента и ин-
формации об условиях взаимодействия 
прибора и стопы человека, что особен-
но важно при наличии контрактуры и 
спастики. Система управления реабили-
тационного комплекса должна обеспе-
чивать как режим пассивного движения 
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в суставах, осуществляемого за счёт 
плавной и постепенной работы элемен-
тов аппарата, так и активного движения 
платформы, когда пациент самостоя-
тельно выполняет движения с учетом 
параметров выбранного режима работы. 
Активный режим работы способствует 
восстановлению нейронных связей [2]. 

Рассмотрим некоторые аппараты, по-
лучившие распространение в области реа-
билитации нижних конечностей [3]. 

К активно-пассивным тренажерам 
нижних конечностей можно отнести:  

 велотренажеры THERA-Trainer Tigo 
(Германия) (рис. 1, а), позволяющие осу-
ществлять тренировки ослабленных мышц 
и уменьшать спастику, а так же улуч-
шать кровообращение в конечностях1. 

 беговые дорожки, степперы, отли-
чающиеся от спортивных  более низкой 
скоростью и небольшим шагом ее изме-
нения, что позволяет пациенту держать 
ситуацию под контролем. Например Lo-
komat Nanos (Швейцария), LEXO (Авcт-
рия) (рис.1, б) и др. используемые для 
восстановления навыков ходьбы, обору-
дованы длинными поручнями и ремнями 
безопасности 2. 

 
1 Реабилитационные тренажеры и их приме-

нение // Реабилитационные тренажеры: виды, мо-
дели, отличия, где и для чего применяются? URL: 
https:// www.kp.ru/guide/reabilitatsionnye-trenazhery.html; 
Роботизированная механотерапия // Бека РУС; 2025. 
URL: https:// https://beka.ru /  

2 Реабилитационное оборудование Ормед // Ка-
талог реабилитационного оборудования и трена-
жеров; 2025. URL: https:// www.ormed.ru/katalog/ 
АРТРОМОТ® ACTIVE-K // Тренажер для пассив-
ной/активной разработки тазо-бедренного/коленного 
сустава. URL: https://www.rusmedimport.com/catalog/ 
rehabilitation/apparaty-dlya-nizhnih-konechnostey/ 
artromot-active-k/ 

 

 тренажеры для нижних конечно-
стей, например линейка российских ап-
паратов «ОРМЕД FLEX», предназначе-
ны для проведения механотерапии та-
зобедренного, коленного и голеностоп-
ного суставов. Могут обеспечивать как 
постоянное пассивное движение, так и 
контролируемое активное движение од-
ного или двух суставов, правильность 
которых отслеживается с помощью тен-
зодатчика (рис. 1, в). Используются для 
предотвращения осложнений после пе-
реломов, травм, а также лечения забо-
левания суставов в послеоперационном 
периоде и др.3.  

Линейка механотерапевтических ре-
абилитационных аппаратов от компании 
«ARTROMOT» (Германия), использу-
ется как для непрерывной, разработки 
одного, так и для двух суставов, напри-
мер коленного и (ARTROMOT ACTI-
VE-K) (рис. 1, г), принцип действия ко-
торого основан на использовании био-
логической обратной связи [4, 5]. 

Обзор существующих мехатронных 
реабилитационных аппаратов, разрешен-
ных к применению, достаточно ограни-
чен и в основном их использование осно-
вание на непрерывном, пассивном дви-
жении нижних конечностей. Некоторые 
модели могут одновременно  обеспечи-
вать движения в двух суставах, напри-
мер голеностопном и коленном, причем 
привод расположен на пятке, которая 

 
3 Rehabilitation simulator for ankle joint devel-

opment Kinetec Breva Ankle CPM; URL: https:// 
medtehnika-1.ru/reabilitatsionniy-trenager-kinetec-
breva-ankle-cpm. 
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находится в возвратно-поступательном 
движении. Это вызывает избыточное 
осевое воздействие на коленный и тазо-
бедренный суставы. 

Целью исследований является обес-
печение заданной точности последова-
тельных и параллельных движений в го-

леностопе, колене, бедре активного реа-
билитационного экзоскелета нижних ко-
нечностей с одновременной частичной 
разгрузкой голеностопного и коленного 
суставов от осевых нагрузок за счет уста-
новки одного из приводов вращательного 
движения на бедерном суставе. 

                  
          а)        б) 

           
   в)      г) 

Рис. 1. Механотерапевтические реабилитационные тренажеры: a – THERA-Trainer Tigo;  
б – LEXO; в – ОРМЕД FLEX -F01BA; г –  ARTROMOT ACTIVE-K 

Fig. 1. Mechanotherapy rehabilitation simulators: a – THERA-Trainer Tigo; б – LEXO;  
в – ОРМЕД FLEX -F01BA; г –  ARTROMOT ACTIVE-K 

Для этого необходимо разработать 
и реализовать стратегию активно - пас-
сивного движения (АПД), при которой 
фазы пассивного движения нижних ко-
нечностей (при этом, экзоскелет обеспе-
чивает перемещение конечностей), соче-
таются с фазами активного движения, ко-

гда сам пациент осуществляет желаемое 
движение, а экзоскелет ассистирует ему 
[6, 7, 8]. 

Материалы и методы 

Рассмотрим схему движения чело-
века в реабилитационном аппарате – 
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экзоскелете. В общем случае, наиболее 
эффективно реабилитация проходит при 
одновременном воздействии на несколь-
ко суставов нижних конечностей. Обоб-
щенная расчетная схема устройства в 
виде плоского манипулятора представ-
лена на рис. 2. Он состоит из 3-х звеньев: 
звено 1 установлено на стойке с помо-
щью активного цилиндрического шарни-
ра; звено 2 связывает первый и третий 
звенья с помощью активных шарниров. 

Звено 3 обеспечивает движение точки С 
пятки стопы пациента в экоскелете, кото-
рое происходит по опорной плоской по-
верхности mn. Возможен вариант как по-
движной, в вертикальной плоскости 
(bconst), так и не подвижной поверхно-
сти (b=const). Точками О, А, В обозна-
чены шарниры экзоскелета, совпадаю-
щие с суставами человека: бедерным, 
коленным и голеностопным соответ-
ственно [8, 9, 10]. 

 
Рис. 2. Кинематическая схема плоского манипулятора – экзоскелета 

Fig. 2. Kinematic scheme of a flat manipulator exoskeleton 

Данный реабилитационный аппарат – 
экзоскелет оснащен двумя приводами. 
Один из них обеспечивает поворот сто-
пы относительно голени, Второй – по-
ворот бедра относительно точки О,  при 
этом точка С перемещается вдоль оси 
Ox. Таким образом, данное реабилита-
ционное устройство позволяет реализо-
вать следующие режимы движения: 

1) реабилитация коленного и тазо-
бедренного суставов; 

2) реабилитация голеностопного су-
става; 

3) реабилитация коленного, тазо-
бедренного и голеностопного суставов. 

Проведем математическое модели-
рование экзоскелета  с шарнирами О, А, 
В  в сагиттальной плоскости [11]. 

Рассмотрим режим, при котором го-
леностопный сустав неподвижен 3=const. 
В этом случае система имеет одну сте-
пень свободы. Её движение происходит 
за счет движения точки С по прямой 
nm, соответственно точка В также со-
вершает прямолинейное поступатель-
ное движение.  

Проведем кинематический анализ эк-
зоскелета, который позволит установить 
связи между шарнирами [8, 10, 12]. 
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Определим кинематические характе-

ристики центов масс звеньев ОА и АВ: 
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Поскольку величины 1 и 2 взаи-
мосвязаны, их начальные значения необ-
ходимо предварительно согласовать.  

Кинематические характеристики точ-
ки C3 в прямолинейном поступательном 
движении, при yC3 = b3: 
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Из (8) получим формулу, связыва-
ющую углы  1 и 2: 
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тогда: 
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Рассмотрим движение манипулято-
ра-экзоскелета под действием управля-
ющего момента М, момента сопротив-
ления мышечной системы МС, действу-
ющих на звено ОА, сил тяжести  G1, G2, 
G3– бедра, голени и стопы приложен-
ных в соответствующих центрах масс 
звеньев C1, C2, C3 (рис.3).  

Для получения дифференциального 
уравнения, описывающего движение ма-
нипулятора - экзоскелета под действием 
управляющего момента М, воспользуем-
ся уравнением Лагранжа II рода [8, 13]: 
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С учетом сил и моментов сопро-
тивления, действующих на звенья ма-
нипулятора, обобщенные силы примут 
вид [8, 9, 14, 15]: 
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где Т, П – кинетическая и потенциаль-
ная энергии системы; Ф – диссипатив-
ная функция Рэлея; qi = 1 - обобщенная 
координата: 
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Рис. 3. Расчетная схема манипулятора – экзоскелета: Хо, Yo – реакции в шарнире О;  

R – реакция опорной поверхности 

Fig. 3. Calculation scheme of the exoskeleton manipulator: Хо, Yo – reactions in the hinge О;  
R – reaction of the support surface 

 
В предположении отсутствия мы-

шечного тонуса, диссипативная функ-
ция Рэлея и ее производная, представля-
ющая собой момент сопротивления МС, 
имеют вид: 
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где   реологический параметр, опре-
деляющие физико-механические свой-
ства мышечной системы нижних ко-
нечностей пациента. 

Определив кинетическую и потен-
циальную энергии  и их производные, 
подставив в уравнение (13) получим 
дифференциальное уравнение, описы-
вающее движение экзоскелета под дей-
ствием управляющего момента  M: 
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Определим силы, действующие в 
тазобедренном шарнире  XO, YO  и реак-
цию R опоры в точке С методом Далам-
бера. Силы инерции, приложенные в 
точках С1, С2, В, силы тяжести G1, G2, 
G3, управляющий момент М и реакция 
R образуют произвольную плоскую 
уравновешенную систему сил. Услови-
ем равновесия которой являются урав-
нения [5]: 
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Определим силы инерции с учетом ускорений точек С1, С2, C3, определенные в  

(3), (6), (7), (10): 

;)cossin(
2 1

2
111

1
1111

  lmxmF x
C  

    ;cossin
2

cossin 2
2
222

2
1

2
11112222 



   llmxmF x

C      (18) 

;)cossincossin( 2
2
222221

2
111113333

  llllmxmF x
C  (19) 

;)sin)(cos(
2 1

2
111

1
1111

  l
mymF y

C  

;)sin
2

cos
2

sincos( 2
2
2

2
22

2
1

2
111112222

  ll
llmymF y

C   (20) 

3 3 3 0y
CF m y  . 

Определим моменты сил инерции относительно точки О: 
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Подставим полученные выражения в уравнения (17): 
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Результаты и их обсуждение 

Математическая модель, представ-
ленная в виде уравнений (24) – (26) яв-
ляется виртуальным двойником экзо-
скелета и позволяет решать две задачи: 
1 – по заданному закону изменения уп-
равляющего момента  M(t), определяем 
закон изменения угла поворота 1(t); 2 –
 синтез параметров электроприводов 
манипулятора, по заданным законам 
изменения обобщенных координат  1(t) 
рассчитываем момент M (t). 

Получив выражение M (t). можно 
определить зависимость мощности элек-
тропривода в шарнире О манипулятора 
от времени. 

)()()( 11 ttMtP   . 

Максимальное значение мощности 
найдем исходя из условий: 

0)( 01 

 tP
t

;  0)( 012

2



 tP
t

. 

Значение t = t0 соответствует мак-
симуму функции P1(t). 

Определив максимальные значения 
мощностей, можно подобрать электро-
двигатели, и определить токи, которые 
обеспечат данные моменты. 

Графики зависимости требуемой ме-
ханической мощности P1 и управляюще-
го момента М от времени t в тазобедрен-
ном шарнире приведены на рис. 4. Для 

mttM )( ; ],0[ Tt ;  m = 3; T = 2.  
В результате моделирования полу-

чим зависимости углов поворота тазо-
бедренного шарнира 1 и голеностопно-
го 2 от времени, а также их скоростей 

   tt 21 ,   и ускорений    tt 21 ,   для 
различных физико-механических свойств 
мышечной системы пациента   (рис. 5, 6).  

 
Рис. 4. Графики зависимостей:  

1 – управляющего момента М  и 2-4 
требуемой механической мощности P1  
от времени t в тазобедренном шарнире 
для различных значений 
реологического параметра мышц :  
2 – =0; 3 – =25; 4 – =50 

Fig. 4. Dependency graphs: 1 – the control 
torque M and 2-4 of the required 
mechanical power P1 from the time t in the 
hip joint for different values of the 
rheological parameter of the muscles :  
2 – =0; 3 – =25; 4 – =50 

На основании полученных данных 
рис. 5, 6 рассмотрим изменение конфи-
гурации экзоскелета при выполнении 
упражнений (рис.7). 

На графиках рис. 7 видно, что угол 
φ1 не превышает 75°, что соответствует 
наложенным на испытуемого ограниче-
ниям. Следовательно, экзоскелет выпол-
няет движения под действием заданного 
момента M(t), не превышая диапазон уг-
лов поворота звеньев, ограниченных ана-
томическими особенностями человека. 
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Рис. 5.  Графики изменения: а  1; b  1 ; c  1  от времени t для 1  =0; 2  =25; 3  =50 

Fig. 5. Graphs of changes: а  1; b  1 ; c  1  from time t for 1  =0; 2  =25; 3  =50 

 
Рис. 6.  Графики изменения: а  2; b  2 ; c  2 от времени t для 1  =0; 2  =25; 3  =50 

Fig. 6. Graphs of changes: а  2; b  2 ; c  2  from time t for 1  =0; 2  =25; 3  =50 
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Рис. 7.  График изменения конфигурации экзоскелета при: 1  =0; 2  = 25; 3   = 50 

Fig. 7. Graph of changes in the configuration of the exoskeleton at:  1  =0; 2  = 25; 3   = 50 

Наблюдается существенная зависи-
мость характера движения (объем дви-
жений в суставах) от параметра , опре-
деляющего момент сопротивления мы-
шечной системы. Исследование влияния 
реологического параметра , на величину 

реакций X0, Y0, действующих в тазобед-
ренном суставе, и реакции R показывает 
значительное уменьшение этих реакций с 
ростом , связанных с падением объёма 
движений в конечности (рис. 8).   

 
Рис. 8.  Графики изменения реакций: а  X0; b  Y0; c R от времени t для 1  =0; 2  =25; 3  =50 

Fig. 8. Graphs of reaction changes: а  X0; b  Y0; c R from time t for 1  =0; 2  =25; 3  =50 
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Выводы 

1. Проведенный анализ технических 
решений реабилитационного тренажер-
но-обучающего комплекса для реабили-
тации пациентов с нарушениями функ-
ций нижних конечностей показал, что 
применение существующих линейных 
приводных систем приводит к появле-
нию значительных силовых воздействий 
в тазобедренном суставе, что снижает 
эффективность процесса реабилитации.  

2. Разработана структура реабили-
тационного аппарата в виде плоского 
экзоскелета, оснащенного двумя приво-
дами, один из которых совмещен с осью 
тазобедерного сустава человека. Такая 
схема позволяет скомпенсировать влия-
ние активных и реактивных сил, дей-
ствующих на тазобедренный сустав че-
ловека при выполнении медицинских 
манипуляций.  

3. Разработана математическая мо-
дель реабилитационного экзоскелета, от-
личающаяся от известных тем, что наря-
ду с учетом кинематических и динамиче-
ских особенностей движения звеньев ре-
абилитационного устройства, учитыва-
ются параметры, характеризующие вяз-
кое силовое взаимодействие экзоскеле-
та и человека, что позволяет определять 
реакции в тазобедренном шарнире и 
синтезировать параметры системы уп-
равления с учетом внешних возмуща-
ющих воздействий. 

Установлено, что при линейном из-
менении управляющего момента проис-
ходит нелинейное изменение угловой ско-
рости движения и как следствие снижение 
потребляемой мощности электропривода 
тазобедренного шарнира. 
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