МАШИНОСТРОЕНИЕ И МАШИНОВЕДЕНИЕ

MECHANICAL ENGINEERING AND MACHINE SCIENCE

Оригинальная статья / Original article

УДК 621.795.75-52

https://doi.org/10.21869/2223-1560-2025-29-2-8-23

Исследование прочности сварной конструкции «промышленный счетчик газа» при нагружении внутренним статическим давлением в программном комплексе APM FEM

И. Ю. Григоров ¹ ⊠

² Юго-Западный государственный университет ул. 50 лет Октября, д. 94, г. Курск 305040, Российская Федерация

Резюме

Целью исследования является выявление зон наибольших напряжений при действии внутреннего статического давления, оценка предельных состояний конструкции, а также проверка соответствия её прочностным критериям.

Методы. В данной статье используется расчет методом конечных элементов сварной конструкции промышленного счетчика газа в программном комплексе APM FEM для КОМПАС-3D v23.0.0.8. Конструкция моделировалась в программе КОМПАС V23, сварные швы конструкции по ГОСТ 16037-80-С17-3П и ГОСТ 16037-80-У19-3П смоделированы с помощью приложения «Неразъемные соединения». В местах расположений сварных швов было применено преобразование швов в тело, для учета их при генерации сетки конечных элементов.

Результаты. На основании проведённого анализа можно утверждать, что конструкция обладает высоким запасом прочности и жёсткости в условиях как нормативных, так и критических нагрузок. Допустимые значения перемещений и коэффициентов запаса подтверждают её надёжность и работоспособность в реальных условиях эксплуатации, включая испытательные режимы. Таким образом, конструкция может быть рекомендована к изготовлению без необходимости внесения изменений в её геометрию или методику сварки.

Заключение. Проведённый численный прочностной анализ сварной конструкции корпуса промышленного газового счётчика с использованием программного комплекса APM FEM показал, что при всех уровнях нагружения, включая испытательное давление до 30 Н/мм², конструкция сохраняет прочностную и геометрическую устойчивость. Полученные значения эквивалентных напряжений и коэффициентов запаса соответствуют требованиям нормативных документов, включая ГОСТ 34233.1—2017. Локальные перемещения конструкции не превышают допустимых значений, что свидетельствует о высокой жёсткости и отсутствии рисков пластической деформации при эксплуатации.

Ключевые слова: сварная конструкция; нагрузка давлением; программный комплекс APM FEM; распределение напряжений; промышленный счетчик газа.

© Григоров И. Ю., 2025

Конфликт интересов: Автор декларирует отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Для цитирования: Григоров И. Ю. Исследование прочности сварной конструкции «промышленный счетчик газа» при нагружении внутренним статическим давлением в программном комплексе APM FEM // Известия Юго-Западного государственного университета. 2025; 29(2): 8-23. https://doi.org/ 10.21869/2223-1560-2025-29-2-8-23.

Поступила в редакцию 05.03.2025

Подписана в печать 27.05.2025

Опубликована 23.07.2025

Study of the strength of the welded structure "industrial gas meter" under loading with internal static pressure in the APM FEM software package

Igor Yu. Grigorov ¹ ⊠

² Southwest State University 50 Let Oktyabrya str., 94, Kursk 305040, Russian Federation

Abstract

Purpose of reseach is to identify zones of greatest stress under the action of internal static pressure, assess the limit states of the structure, and check its compliance with strength criteria.

Methods. This article uses the finite element calculation of a welded structure of an industrial gas meter in the APM FEM software package for KOMPAS-3D v23.0.0.8. The structure was modeled in the KOMPAS V23 program, the welds of the structure according to GOST 16037-80-C17-ZP and GOST 16037-80-U19-ZP were modeled using the "Permanent Joints" application. In places where welds are located, the transformation of welds into a body was applied to take them into account when generating a finite element mesh.

Results. Based on the analysis, it can be stated that the structure has a high margin of safety and rigidity under both standard and forced loads. The permissible values of displacements and safety factors confirm its reliability and operability under real operating conditions, including test modes. Thus, the structure can be recommended for manufacturing and subsequent testing without the need to make changes to its geometry or welding method.

Conclusion. The numerical strength analysis of the welded structure of an industrial gas meter housing, performed using the APM FEM module for KOMPAS-3D, confirmed the structural integrity under all pressure conditions, including test pressure up to 30 N/mm2. The obtained von Mises stress values and safety factors meet the requirements of applicable regulatory standards, including GOST 34233.1-2017 and PB 03-576-03. The total displacements remain within acceptable limits, indicating high stiffness and the absence of plastic deformation risks during operation.

Keywords: welded structure; pressure load; APM FEM software package; stress distribution; industrial gas meter.

Conflict of interest: The Author declare the absence of obvious and potential conflicts of interest related to the publication of this article.

For citation: Grigorov I. Yu. Study of the strength of the welded structure "industrial gas meter" under loading with internal static pressure in the APM FEM software package. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University. 2025; 29(2): 8-23 (In Russ.). https://doi.org/10.21869/ 2223-1560-2025-29-2-8-23.

Received 05.03.2025 Accepted 27.05.2025 Published 23.07.2025 ***

Введение

В современных инженерных задачах прочностной анализ конструкций становится особенно актуальным в условиях сложной геометрии, значительных размеров и эксплуатации в экстремальных режимах. Проведение натурных и даже полунатурных испытаний в таких условиях сопряжено с существенными материальными затратами и техническими трудностями, особенно при необходимости определения предельных (разрушающих) нагрузок. Особое внимание при расчётах уделяется сварным соединениям, поскольку именно в этих зонах наиболее часто наблюдаются концентрации напряжений, способные привести к разрушению конструкции. В работах [1-3] описаны методы проведения подобных испытаний, однако малоизученным является вопрос об изменении прочностных характеристик конструкции в целом, учитывая все сварные швы.

Ультразвуковой промышленный счетчик газа предназначен для коммерческого либо технологического измерения (учета) объемов плавно меняющегося потока очищенного неагрессивного, неоднородного по химическому составу природного газа, а также воздуха, азота и других неагрессивных газов, при использовании их в промышленных установках, магистральных трубопроводах, а также в системах энергоснабжения. Счетчики мо-

гут применяться на опасных производственных объектах, в том числе в нефтеперерабатывающей, нефтехимической, химической, газовой и других отраслях промышленности.

Корпус счетчика промышленного газа выполнен из трубы 159×8 стальной бесшовной горячедеформированной. Материал – 09Г2С. Сортамент должен соответствовать ГОСТ 8732-78. Химический состав, механические свойства материала должны соответствовать ГОСТ 19281-89.

Составные части корпуса счетчика газа соединяют замкнутые по контуру сварные швы.

- Сварные швы, соединяющие фланцы и трубу 159×8 – кольцевые стыковые, положение сварки – нижнее.
- Сварные швы, соединяющие патрубки и трубу 159×8, криволинейные угловые, положение сварки горизонтальное.
- Сварные швы, соединяющие патрубки и трубу шейку и трубу 159×8 криволинейные угловые, положение горизонтальное.

Конструкция корпуса промышленного газового счетчика представлена на рис. 1.

Условия работы корпусов промышленных счетчиков характеризуются наличием внутреннего статического давления, действующего длительное время при нормальной или пониженной температуре.

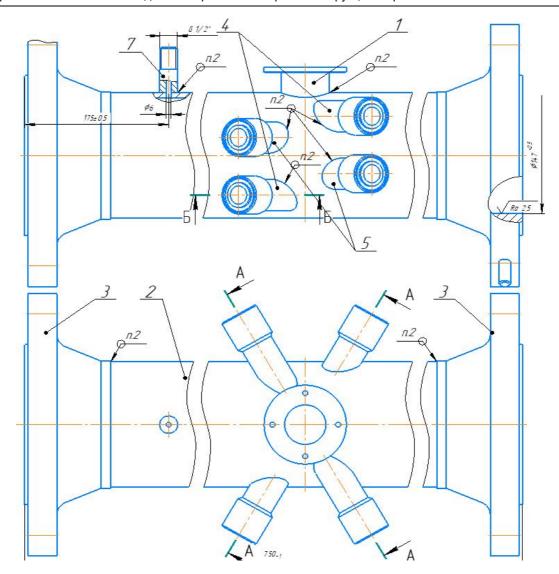


Рис. 1. Конструкция корпуса промышленного газового счетчика: 1 – шейка; 2 – труба 159х8 ГОСТ 8732-78; **3** – фланец 150-63-11-1-Е-09Г2С-IV-d161 ГОСТ 12821-80; **4** – патрубки; **5** – патрубки; **7** – патрубок

Fig. 1. Industrial gas meter housing design: 1 – Neck; 2 – Pipe 159x8 GOST 8732-78;

- 3 Flange 150-63-11-1-E-09G2S-IV-d161 GOST 12821-80; 4 Branch pipes;
- 5 Branch pipes; 7 Branch pipe

Исследуемая конструкция представляет собой сложный сварной узел, состоящий из центрального цилиндра, фланцев и дополнительных соединений, выполненных с использованием сварочных технологий. Данный узел используется в условиях повышенного давления (до 150 атмосфер), что предъявляет жёсткие требования к выбору сварочных материалов,

качеству сварных соединений и форме конструкции. Подобные изделия отличаются высокой производительностью измерений и широкой универсальностью, что обусловливает значительный интерес к его применению в различных отраслях промышленности и служит основной причиной большого количества научных исследований в этой области [4–19].

Целью работы является поиск критических значений прочности конструкции при испытательном давлении от минимального до максимального рабочего и превышающего его, с использованием методов численного моделирования.

Материалы и методы

Конструкция моделировалась в программе КОМПАС V23, сварные швы конструкции по ГОСТ 16037-80-С17-ЗП и ГОСТ 16037-80-У19-ЗП смоделированы с помощью приложения «Неразъемные соединения». В местах расположений сварных швов было применено преобразова-

ние швов в тело, для учета их при генерации сетки.

Исследование внутренним статическим давлением проводилось в приложении APM FEM для КОМПАС-3D v23.0.0.8 с приложением различного тестового давления от 10 до 300 атм. Испытания проводились для выявления максимальных напряжений в конструкции и в сварных соединениях.

Созданная трёхмерная модель конструкции, на которую наложены граничные условия и приложены силы, соответствующие давлению испытаний показана на рис. 2.

Рис. 2. Трехмерная модель корпуса промышленного счетчика газа

Fig. 2. 3D model of industrial gas meter housing

Закрепление модели – ограничение перемещения и вращения относительно координатных осей X, Y, Z торцевых по-

верхностей присоединительных фланцев, показано на рис. 3.

Рис. 3. Закрепление корпуса промышленного счетчика газа

Fig. 3. Fastening the housing of an industrial gas meter

Параметры сетки конечных элементов представлены в табл. 1.

Внешний вид сгенерированной сетки конечных элементов представлен на рис. 4.

Таблица 1. Параметры сетки конечных элементов

Table 1. Finite element mesh parameters

В качестве материала для конструкции корпуса промышленного счетчика газа в приложении APM FEM для КОМ-ПАС-3D v23.0.0.8 был принят материал, свойства которого приведены в табл. 2.

Наименование параметра / Parameter Name	Значение параметра / Parameter value
Тип элементов	Твердотельные 10-узловые тетраэдры
Значения	Абсолютные
Средняя длина стороны элемента, мм	10
Минимальная длина стороны элемента, мм	2
Максимальный коэффициент разрежения на поверхности	1.2
Коэффициент разрежения в объеме	1.5
Тип сетки	Сглаженная адаптивная
Угловой шаг, градус	18

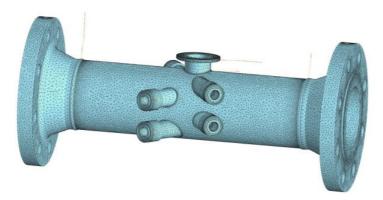


Рис. 4. Внешний вид сетки конечных элементов

Fig. 4. Appearance of the finite element mesh

Таблица 2. Свойства материала конструкции

Table 2. Properties of the construction material

Предел текучести, H/мм ²	235
Предел прочности при растяжении, H/мм ²	410
Модуль упругости, H/мм ²	200000
Коэффициент Пуассона	0,3
Массовая плотность, кг/м ³	7.80000111144041e-06
Предел выносливости при растяжении, H/мм ²	209
Предел выносливости при кручении, H/мм ²	139

В рамках численного моделирования прочности корпуса промышленного счетчика газа при воздействии внутреннего статического давления была получена эпюра распределения эквивалентных напряжений по Мизесу(рис. 5).

Значения действующего статического давления на внутренние стенки конструкции и максимальные значения напряжения в конструкции приведены в табл. 3.

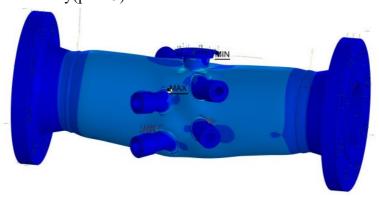


Рис. 5. Эпюра распределения напряжений в корпусе промышленного счетчика газа по Мизесу

Fig. 5. The stress distribution diagram in the housing of an industrial gas meter according to von Mises

Таблица 3. Значения заданного давления и максимальное напряжение

Table 3. Values of set pressure and maximum voltage

Давление, H/мм ² / Pressure, N/mm ²	Эквивалентное напряжение по Мизесу, (SVM),
	H/мм ² /Mises equivalent voltage, (SVM), N/mm ²
1	9.059065
5	45.298165
7	63.41781
9	81.529745
11	99.656465
13	117.765354
15	135.906858
20	181.167336
30	271.766378

Анализ полученных данных эквивалентных напряжений по Мизесу показал, что при достижении давления 30 Н/мм² напряжения достигают 271.77 Н/мм², что остаётся ниже предела прочности материала (410 Н/мм²), однако превышает предел текучести (235 Н/мм²), что указывает

на возможность возникновения остаточных деформаций. В соответствии с нормативными требованиями [20], рабочее давление не должно превышать 15 Н/мм², при котором минимальный коэффициент запаса по текучести составляет 1.73. Нагрузки выше 20 Н/мм² приводят к

недопустимым деформациям, что подтверждает необходимость ограничения давления в эксплуатации до пределов упругой зоны.

При исследовании прочности корпуса промышленного счетчика газа, под воздействием внутреннего статического давления была получена эпюра распределения суммарного линейного перемещения узлов сетки конечных элементов (рис. 6).

Числовые показатели суммарного линейного перемещения узлов сетки конечных элементов представлены в табл. 4.

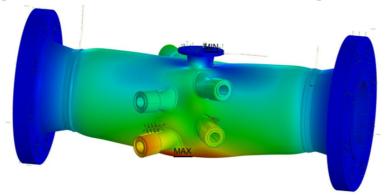


Рис. 6. Эпюра распределения суммарного линейного перемещения узлов сетки конечных элементов

Fig. 6. Distribution diagram of the total linear displacement of the nodes of the finite element mesh

Таблица 4. Значения заданного давления и суммарного линейного перемещения узлов сетки конечных эпементов

Table 4. Values of the specified pressure and the total linear displacement of the finite element mesh nodes

Давление, H/мм ² / Pressure, N/mm ²	Суммарное линейное перемещение узлов сетки конечных элементов, (USUM), мм / Total linear displacement of the nodes of the finite element grid, (USUM), mm
1	0,000238
5	0,001189
7	0,001665
9	0,002141
11	0,002617
13	0,003092
15	0,003569
20	0,004757
30	0,007136

В результате конечно-элементного анализа установлено, что максимальные суммарные линейные перемещения узлов сетки конечных элементов (USUM)

составляют 0.0071 мм при 30 H/мм², при рабочих режимах перемещения не превышают 0.0035 мм. Допустимые перемещения для подобных конструкций, согласно рекомендациям из [20], могут составлять до 1 мм, если они не влияют на работу фланцевых соединений. Следовательно, жёсткость конструкции можно признать высокой, а влияние деформаций – незначительным.

Наибольшие локальные смещения наблюдаются в центральной зоне конструкции, ниже пересечения вварки патрубков, однако их величина не превышает 1 мм, что подтверждает работоспособность конструкции.

Суммарное линейное перемещение узлов сетки конечных элементов конструкции при рабочих нагрузках не превышает 0.0071 мм, что значительно ниже общепринятых допусков.

На рис. 7 представлена эпюра распределения коэффициента запаса по пределу текучести.

Показатели коэффициента запаса по пределу текучести представлены в табл. 5.

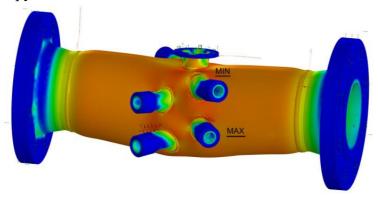


Рис. 7. Эпюра распределения коэффициента запаса по пределу текучести

Fig. 7. Distribution diagram of the safety factor for yield strength

Таблица 5. Значения заданного давления и показатели коэффициента запаса по пределу текучести

Table 5. Values of the specified pressure and indicators of the safety factor for the yield strength

	Коэффициент запаса по пределу
Давление, H/мм ² /Pressure, N/mm ²	текучести, (SVM, max-10) / Yield strength
	reserve ratio, (SVM, max-10)
1	9.448238
5	6.412233
7	6.008732
9	5.78464
11	5.641921
13	5.543212
15	5.080692
20	3.810543
30	2.540349

Расчеты показали, что коэффициент запаса по пределу текучести (SVM) варьируется в наиболее нагруженных зонах от 9.448238 до 2.540349. Ограничение максимального значения 10.0 исключает численные аномалии в областях, близких к идеальным закреплениям.

Минимальное значение коэффициента запаса по текучести составило 2.54 при испытательном давлении 30 Н/мм² и 5.08 при рабочем давлении 15 H/мм².

Таким образом, даже при максимально возможной нагрузке (включая

испытания) конструкция сохраняет запас по текучести выше допустимого уровня $k \ge 2$, установленного в нормативных документах. Напряжения остаются в пределах упругой зоны, пластическая деформация не развивается.

На рис. 8 представлена эпюра распределения коэффициента запаса по пределу прочности.

Числовые показатели коэффициента запаса по пределу прочности представлены в табл. 6.

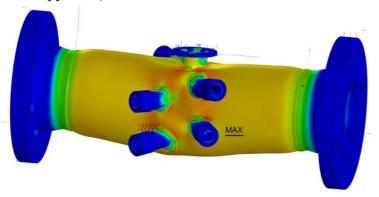


Рис. 8. Эпюра распределения коэффициента запаса по пределу прочности

Fig. 8. Distribution diagram of the safety factor for ultimate strength

Таблица 6. Значения заданного давления и коэффициент запаса по пределу прочности Table 6. Values of the specified pressure and the safety factor for the ultimate strength

	Коэффициент запаса по пределу прочности,
Давление, H/мм ² / Pressure, N/mm ²	(SVM, max-10) / Coefficient of margin of ultimate
	strength, (SVM, max-10)
1	9.782032
5	7.463895
7	6.759915
9	6.368947
11	6.119947
13	5.947731
15	5.821225
20	5.616059
30	4.432099

Анализ показал, что коэффициент запаса по пределу прочности (SVM) варьируется в наиболее нагруженных зонах от 9.782032 до 4.432099. Допустимым считается значение запаса не менее 1.5 для расчётов на прочность при эксплуатации и не менее 1.0 при кратковременных испытаниях [20]. Следовательно, конструкция обладает высокой стойкостью к разрушению, в том числе в условиях нештатных перегрузок.

Результаты и их обсуждение

На основе численного моделирования напряжённо-деформированного состояния сварной конструкции корпуса промышленного газового счётчика при воздействии внутреннего статического давления получены количественные и качественные оценки прочностных характеристик изделия.

В диапазоне испытательных давлений от 1 до 30 H/мм² проанализированы эквивалентные напряжения по Мизесу, суммарные линейные перемещения узлов сетки конечных элементов, а также коэффициенты запаса по пределу текучести и прочности. Согласно полученным данным, при максимальном давлении 30 H/мм² эквивалентные напряжения достигают 271.77 H/мм², что остаётся ниже предела прочности материала (410 H/мм²), при этом коэффициент запаса по текучести составляет 2.54, а по прочности – 4.43. Эти значения свидетельствуют о наличии достаточного резерва надёжности даже в условиях перегрузки.

Суммарные линейные перемещения узлов сетки конечных элементов конструкции находятся в пределах от 0.0002 мм — при минимальной нагрузке до 0.0071 мм при максимальной. Эти показатели значительно ниже допустимых значений, регламентированных нормативным документом¹, что подтверждает высокую жёсткость конструкции и её способность сохранять геометрическую устойчивость в рабочих и предельных режимах. Наибольшие деформации выявлены в зоне пересечения патрубков, однако их значение не превышает установленных нормативных ограничений.

Эпюры коэффициентов запаса, полученные в ходе моделирования, указывают на локализацию наибольших нагрузок вблизи сварных соединений патрубков и фланцев. Тем не менее, ни одно из значений коэффициента не опускается ниже минимально допустимых нормативных уровней ($k \ge 2$ для условий эксплуатации, $k \ge 1$ для кратковременных испытаний).

Результаты моделирования находятся в соответствии с опубликованными данными по оценке прочности сварных соединений аналогичных конструкций в работах [1–3, 11–13], что подтверждает корректность принятых методических подходов и выбор программного обеспечения для инженерного анализа. Высокая сходимость резуль-

¹ ГОСТ 34233.1–2017. Сосуды и аппараты. Нормы и методы расчета на прочность. Общие требования. М.: Стандартинформ, 2018. 42 с.

татов с нормативными критериями прочности позволяет рассматривать предложенную конструкцию как технологически зрелую и пригодную для промышленной реализации без необходимости дополнительных корректировок.

Выводы

Результаты проведённого численного анализа прочности сварной конструкции корпуса промышленного газового счётчика в программной среде APM FEM для КОМПАС-3D v23.0.0.8 позволяют сделать обоснованные выводы о её надёжности и устойчивости к внутренним статическим нагрузкам. Полученные данные свидетельствуют о том, что конструкция сохраняет прочностную и геометрическую стабильность при воздействии как нормативного, так и испытательного давления до 30 H/мм², демонстрируя при этом высокие значения коэффициентов запаса по пределу текучести и прочности – в диапазоне 2.54–9.44 и 4.43-9.78 соответственно.

Максимальные значения эквивалентных напряжений и суммарных переме-

щений узлов сетки конечных элементов, рассчитанные в наиболее нагруженных зонах конструкции, не превышают допустимых пределов, установленных актуальным нормативно-техническим документом¹. Минимальное линейное перемещение узлов сетки конечных элементов конструкции составляет порядка 0.0071 мм при максимальной нагрузке, что подтверждает её высокую жёсткость и отсутствие склонности к развитию пластических деформаций.

Особое внимание в работе уделено моделированию сварных соединений, поскольку именно они, часто являются потенциальными зонами концентрации напряжений. Результаты анализа подтвердили корректность геометрических и конструктивных решений, обеспечивающих равномерное распределение напряжений.

Учитывая вышеизложенное, сварную конструкцию корпуса промышленного газового счётчика можно считать устойчивой к рабочим нагрузкам в условиях внутреннего статического давления.

Список литературы

- 1. Котельников А.А., Григоров И.Ю., Гречухин А.Н. Математическое моделирование в сварочном производстве. Курск, 2024.
- 2. Котельников А.А., Натаров А.С. Исследование распределения напряжений, возникающих при нагружении, в сварных соединениях методом конечных элементов // Известия Юго-Западного государственного университета. Серия: Техника и технологии. 2019. Т.23, № 4. С. 19–30.

¹ ГОСТ 34233.1–2017. Сосуды и аппараты. Нормы и методы расчета на прочность. Общие требования. М.: Стандартинформ, 2018. 42 с.

- 3. Котельников А. А., Абышев К. И., Алпеева Е. В. Применение метода конечных элементов в расчётах сварных конструкций. Курск, 2014. 125 с. EDN: SDMWBD
- 4. Анищенко Г. В. Расширение функциональных возможностей счетчика газа ТРСГ-ИРГА // СФЕРА. Нефтегаз. 2019. №6. С. 66–67.
- 5. Импульсный корреляционный расходомер газа с накладными датчиками / А.Д. Мансфельд, Г.П. Волков, Р.В. Беляев, А.Г. Санин, Д.В. Мороскин // Акустический журнал. 2023. Т. 69, №3. С. 374–385. https://doi.org/10.31857/S0320791922700034.
- 6. Анализ технико-экономических аспектов диагностики и ремонта газопроводов / И.И. Велиюлин, В.И. Городниченко, В.А. Александров, В.П. Сытов, А.С. Лопатин // Оборудование и технологии для нефтегазового комплекса. 2022. Т. 6, № 132. С. 94–98. https://doi.org/10.33285/1999-6934-2022-6(132)-94-98
- 7. Исследования опасности вмятин и гофров на магистральных газопроводах / И.И. Велиюлин, В.И. Городниченко, М.Ю. Митрохин, В.А. Александров, В.П. Сытов, А.С. Лопатин // Оборудование и технологии для нефтегазового комплекса. 2023. №5(137). С. 66–69. https://doi.org/10.33285/1999-6934-2023-5(137)-66-69
- 8. Поповцев В., Хальясмаа А., Патраков Ю. Численное моделирование взаимодействия дуги отключения с потоком элегаза в автокомпрессионном дугогасительном устройстве элегазового выключателя 110 кВ // Вестник Южно-Уральского государственного университета. Серия: Энергетика. 2023. Т. 23, № 2. С. 30–45. https://doi.org/10.14529/power230203
- 9. Загидулин Р.В., Бакиев Т.А., Бакиев А.Т. К распознаванию стресс-коррозионных трещин в металле по сигналу вихретоковых преобразователей // Контроль. Диагностика. 2022. Т. 25, № 2. С. 22–31. https://doi.org/10.14489/td.2022.02.pp.024-033td-j.ru
- 10. Расчет характеристик выбросов внутреннего давления в магистральных газопроводах / Д. Намгаладзе, Т. Кизирия, Л. Шатакишвили, Т. Гванидзе // World Science. 2021. № 1(62). https://doi.org/10.31435/rsglobal_ws/30012021/7408
- 11. Design and Analysis of Pressure Vessel According to Internal Design Pressure and Temperature Using FEM / L. Heng, J.H. Park, R. Wang, M.S. Kim, G.E. Yang, S.D. Mun // Advances in Engineering Research. 2017. Vol. 132. P. 375–380. https://doi.org/10.2991/icmmse-17.2017.75
- 12. Acar M.A., Gönenli C., Selek M.B. Finite Element Analysis of the Pressure Vessels with Various Materials and Thicknesses // International Journal of Scientific Research and Management. 2024; 12(09): 1452–1459. https://doi.org/10.18535/ijsrm/v12i09.ec05
- 13. Design and Static Structural Analysis of Pressure Vessel using Finite Element Technique / P.M. Rao, T.J.P. Kumar, P.G. Krishnaiah, K.A. Francy, K.V. Reddy // International Journal of Disaster Recovery and Business Continuity. 2021; 12(1): 123–130.
- 14. Jin S., Li Z., Lan T., et al. Nonlinear Finite Element Analysis of Prestressed Concrete Containment Vessel under Severe Accident Loads // KSCE Journal of Civil Engineering. 2020; 24: 816–825. https://doi.org/10.1007/s12205-020-0603-3

- 15. Finite Element Analysis of Potential Liner Failures During Operation in Spherical Pressure Vessel / R. Pramod, N.S. Shanmugam, C.K. Krishnadasan, K. Sankaranarayanasamy // Advances in Computational Methods in Manufacturing. 2019: 1073–1087. https://doi.org/10.1007/978-981-32-9072-3 90
- 16. A simulation analysis method for strength and fatigue design of prestressed wound ultra-high pressure vessels / L. Che, P. Wang, L. Ma, Y. Feng, J. Zhao, X. Li // Advances in Mechanical Engineering. 2023; 15(1): 1–15. https://doi.org/10.1177/16878132231209640
- 17. Shirwa F.M. Finite Element Analysis of Pressure Vessels Subjected to Uniform Internal Pressure Using Ansys Software // International Journal of Research and Innovation in Applied Science. 2022; 7(9): 45-50.
- 18. Vardhan H., Sztipanovits J. Deep Learning-based Finite Element Analysis (FEA) surrogate for sub-sea pressure vessel // arXiv preprint. 2022. https://arxiv.org/abs/2206.03322
- 19. Warrior N. A., Durrant J. C. The Application of Finite Element Modelling to Pressure Vessel Design Codes // NAFEMS Publication. 2000. https://www.nafems.org/publications/ resource center/r0071/

References

- 1. Kotelnikov A.A., Grigorov I.Yu., Grechukhin A.N. Mathematical modeling in welding production. Kursk; 2024. (In Russ.).
- 2. Kotelnikov A.A., Natarov A.S. Study of the distribution of stresses arising under loading in welded joints using the finite element method. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies. 2019; 23(4):19–30. (In Russ.).
- 3. Kotelnikov A. A., Abyshev K. I., Alpeeva E. V. Application of the finite element method in calculations of welded structures. Kursk; 2014. 125 p. (In Russ.). EDN: **SDMWBD**
- 4. Anishchenko G. V. Expansion of the functional capabilities of the TRSG-IRGA gas meter. SFERA. Neftegaz = SPHERE. Oil and Gas. 2019; (6): 66–67. (In Russ.).
- 5. Mansfeld A.D., Volkov G.P., Belyaev R.V., Sanin A.G., Moroskin D.V. Pulse correlation gas flowmeter with clamp-on sensors. Akusticheskii zhurnal = Acoustic journal. 2023; 69(3): 374–385. (In Russ.). https://doi.org/10.31857/S0320791922700034
- 6. Veliyulin I.I., Gorodnichenko V.I., Aleksandrov V.A., Sytov V.P., Lopatin A.S. Analysis of technical and economic aspects of diagnostics and repair of gas pipelines. Oborudovanie i tekhnologii dlya neftegazovogo kompleksa = Equipment and technologies for the oil and gas complex. 2022; (6): 94–98. (In Russ.). https://doi.org/10.33285/1999-6934-2022-6(132)-94-98
- 7. Veliyulin I.I., Gorodnichenko V.I., Mitrokhin M.Yu., Aleksandrov V.A., Sytov V.P., Lopatin A.S. Research of the danger of dents and corrugations on main gas pipelines. Obo-

- rudovanie i tekhnologii dlya neftegazovogo kompleksa = Equipment and technologies for the oil and gas complex. 2023; (5): 66–69. (In Russ.). https://doi.org/10.33285/1999-6934-2023-5(137)-66-69
- 8. Popovtsev V., Khalyasmaa A., Patrakov Yu. Numerical modeling of the interaction of the tripping arc with the SF6 gas flow in the autocompression arc extinguishing device of a 110 kV SF6 circuit breaker. *Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seri-ya: Energetika = Bulletin of the South Ural State University. Series: Power Engineering.* 2023; 23(2): 30–45. (In Russ.). https://doi.org/10.14529/power230203
- 9. Zagidulin R.V., Bakiev T.A., Bakiev A.T. On the recognition of stress-corrosion cracks in metal by the signal of eddy current transducers. *Kontrol'*. *Diagnostika* = *Control*. *Diagnostics*. 2022; 25(2): 22–31. (In Russ.). https://doi.org/10.14489/td.2022.02.pp.024-033td-j.ru
- 10. Namgaladze D., Kiziria T., Shatakishvili L., Gvanidze T. Calculation of the characteristics of internal pressure emissions in main gas pipeline. *World Science*. 2021; (1). (In Russ.).https://doi.org/10.31435/rsglobal_ws/30012021/7408
- 11. Heng L., Park J.H., Wang R., Kim M.S., Yang G.E., Mun S.D. Design and Analysis of Pressure Vessel According to Internal Design Pressure and Temperature Using FEM. *Advances in Engineering Research*. 2017; 132: 375–380. https://doi.org/10.2991/icmmse-17.2017.75
- 12. Acar M.A., Gönenli C., Selek M.B. Finite Element Analysis of the Pressure Vessels with Various Materials and Thicknesses. *International Journal of Scientific Research and Management*. 2024; 12(09): 1452–1459. https://doi.org/10.18535/ijsrm/v12i09.ec05
- 13. Rao P.M., Kumar T.J.P., Krishnaiah P.G., Francy K.A., Reddy K.V. Design and Static Structural Analysis of Pressure Vessel using Finite Element Technique. *International Journal of Disaster Recovery and Business Continuity*. 2021; 12(1): 123–130.
- 14. Jin S., Li Z., Lan T., et al. Nonlinear Finite Element Analysis of Prestressed Concrete Containment Vessel under Severe Accident Loads. *KSCE Journal of Civil Engineering*. 2020; 24: 816–825. https://doi.org/10.1007/s12205-020-0603-3
- 15. Pramod R., Shanmugam N.S., Krishnadasan C.K., Sankaranarayanasamy K. Finite Element Analysis of Potential Liner Failures During Operation in Spherical Pressure Vessel. *Advances in Computational Methods in Manufacturing*. 2019: 1073–1087. https://doi.org/10.1007/978-981-32-9072-3_90
- 16. Che L., Wang P., Ma L., Feng Y., Zhao J., Li X. A simulation analysis method for strength and fatigue design of prestressed wound ultra-high pressure vessels. *Advances in Mechanical Engineering*. 2023; 15(1): 1–15. https://doi.org/10.1177/16878132231209640
- 17. Shirwa F.M. Finite Element Analysis of Pressure Vessels Subjected to Uniform Internal Pressure Using Ansys Software. *International Journal of Research and Innovation in Applied Science*. 2022; 7(9): 45–50.

- 18. Vardhan H., Sztipanovits J. Deep Learning-based Finite Element Analysis (FEA) surrogate for sub-sea pressure vessel. arXiv preprint. 2022. Available at: https://arxiv.org/abs/ 2206.03322
- 19. Warrior N.A., Durrant J.C. The Application of Finite Element Modelling to Pressure Vessel Design Codes. NAFEMS Publication. 2000. https://www.nafems.org/publications/ resource center/r0071/

Информация об авторе / Information about the Author

Григоров Игорь Юрьевич, кандидат технических наук, доцент кафедры машиностроительных технологий и оборудования, Юго-Западный государственный университет, г. Курск, Российская Федерация, e-mail: grighorov.ighor@mail.ru,

ORCID: https://orcid.org/0000-0001-6207-8194

Igor Yu. Grigorov, Cand. of Sci. (Engineering),, Associate Professor, Mechanical Engineering Technologies and Equipment Department, Southwest State University, Kursk, Russian Federation, e-mail: grighorov.ighor@mail.ru, ORCID: https://orcid.org/0000-0003-2003-960X